Seite - 75 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 75 -
Text der Seite - 75 -
Energies2018,11, 3433
Table1.Correlation indexcomparisonofEMDandVMD.
Decomposition IMF
1 2 3 4 5 6 7 8 9 10
EMD 0.58 0.42 0.40 0.28 0.46 0.35 0.02 0.43 0.82 0.96
VMD 0.98 0.83 0.80 0.63 0.53 0.26 0.15 0.01 −0.02 −0.02
Inaddition,VMDcanremovetheinherentnoise.ActualAMIdatahavenoiseowingtotheinterference
due toperipheral electronicdevices. VMDcan improve theaccuracyof the load forecasting through
thedeep learning trainingandregularizationprocessbyreducing theweightofhigh frequencies that
aresusceptibletonoise,suchasVMF-8,VMF-9,andVMF-10,whichhavelowcorrelationindicesof less
than1%.TheAMIusedinthisstudyhasathree-timeshighersamplingthanconventionalAMIandcan
reducethemodeluncertaintyasmoresamplesaremeasured.Theproposedmethodreducestheprediction
uncertaintybytrainingthedecomposedsignalwiththehighsamplingAMI.
6.CaseStudies
Thetimeseries forecastingmodelsweresimulatedonreal-worlddatasetsofbusinessbuildings.
Weconductedthecasestudieswithdifferentpredictionmodelsandpredictiontimescales. Theweekly
predictionresults foronehouraheadloadforecastingareshowninFigure7.
0 200 400 600 800 1000 1200 1400 1600 1800 2000
150
200
250
300
350
400
(a) 350 400 450 500 550 600
180
200
220
240
260
280
300
320
340
360
380
(b)
Figure7.Actualanddifferent loadforecasting foraweek. (a)Weekly loadforecasting; (b)Monday
loadforecasting.
6.1. ComparativeConventionalLoadForecastingModels
To validate the efficacy of the proposed VMD-LSTM RNN, eight load forecasting models,
includingARIMA, SVR, GPR,NARX,NARXwith EMD,NARXwith VMD, LSTM, LSTMwith
EMD,andLSTMwithVMD,werecomparedunder thesamebenchmarks (RMSE,MAE,andMAPE).
TheARIMAmodelhasbeenusedfor time-seriesprediction.However,with theriseofmachine
learning, theGPRandSVRmodelsarebeingutilized. Toaccount forseasonality inanARIMAmodel,
threehyperparameterswereused: autoregression, stationarity,andmovingaverage. TheGPRmodel
usesstatisticalhyperparameters, includingvarianceandlength,whereas theSVRmodeldependson
kernelparameters,apenaltyfactor,andinsensitivezonethickness. TheARIMA,GPR,andSVRmodels
aretrainedthroughcross-validationandADAMoptimizationorparticleswarmoptimization[2,26–29].
Tocompare theperformanceof theRNNs,wecomparedtheresultsofapplyingtwodecomposition
methods to theNARXandLSTMmodelsThepredictionresultsofallmodelsareshowninFigure7,
75
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik