Seite - 76 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 76 -
Text der Seite - 76 -
Energies2018,11, 3433
and thepredictionaccuracybydayof theweek is showninFigure8. Table2also summarizes the
performanceatdifferent timescales.
6.2.WeeklyLoadForecasting
Figure7 illustrates theSTLFforbuilding loadwithonehourago(12stepsahead). Tocheckthe
performanceof theproposedmethodbasedonVMDandLSTM, thepredictionresultsofdifferent
methodswerecompared.Acloser lookat thepredictionresults reveals theMondayloadforecasting in
Figure7b. Theproposedmodelshowedrobustperformanceunderabrupt loadincreasesanddecreases
in400samplesand500samples, respectively.Conventionalmodelsexhibitedconservativechanges to
suddenloadchanges,andEMD-LSTMexhibitedexcessiveweightchanges.
Figure8showstheaveragepredictiveerrorof thedifferentmethods. Theresultof loadforecasting
withone-monthAMIdata is shown inFigure 8a, andFigure8b is theprediction resultwith three
monthsofAMIdata. Therearedistinct loadcharacteristics for eachdayof theweek. EMD-LSTM
hadlargeerrorswithanRMSEof32.68kWh,MAEof28.61kWh,andMAPEof12.24%onSundayin
Figure8a.However, if thesizeof thedataset is sufficiently largeor thepredictiontimescale is long
enough, the initialerrorcanbecorrected.Whenthedataare insufficientwithashort timescale, the
inputof thereference loadprofile (which ismeasurementdataat themaximumobservable timebefore
loadforecasting)canbeadominant featureofmachine learning,whichcausesa largeerror. Figure8
showsthat, if theLSTMcorrectlydecomposedperiodic features, ithadhighaccuracyevenwithsmall
amountsofdata,but if therewasanerror in the feature, thepredictionerroralso increasedbecauseof
thememorycell structureofLSTM.
VMDcanreflectmoredominantpatterns thanEMDwithdistinctperiodicity. Theperformance
difference of decomposition between EMD andVMD is shown in Figures 4 and 5. The RNNs
usingVMDshowedperformance improvements. However, therewasadifference inperformance
improvement between NARX and LSTM because the vanishing gradient problem was solved
differently,whereNARXusedthedelayfactorandLSTMhadthememorycell structure.AsLSTM
preservedcharacteristicsofdominantfeaturesthroughthememorycell,LSTMshowedhigheraccuracy
thanNARXinSTLF.
Sun Mon Tue Wed Thu Fri Sat
0
10
20
30
40
Sun Mon Tue Wed Thu Fri Sat
0
5
10
15
20
25
30
Sun Mon Tue Wed Thu Fri Sat
0
2
4
6
8
10
12
14
(a) Sun Mon Tue Wed Thu Fri Sat
0
10
20
30
40
Sun Mon Tue Wed Thu Fri Sat
0
5
10
15
20
25
30
Sun Mon Tue Wed Thu Fri Sat
0
2
4
6
8
10
12
14
(b)
Figure8.Benchmarksofdifferentmodels. (a)One-monthAMIdata; (b)Three-monthAMIdata.
76
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik