Seite - 81 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 81 -
Text der Seite - 81 -
Energies2018,11, 3433
44. Li,Y.;Huang,Y.;Zhang,M.Short-termloadforecastingforelectricvehiclechargingstationbasedonniche
immunity lionalgorithmandconvolutionalneuralnetwork.Energies2018,11, 1253. [CrossRef]
45. Greff,K.; Srivastava,R.K.;Koutník, J.; Steunebrink,B.R.; Schmidhuber, J.LSTM:Asearchspaceodyssey.
IEEETrans.NeuralNetw. Learn. Syst. 2017,28, 2222–2232. [CrossRef] [PubMed]
46. Chung, J.;Gulcehre,C.;Cho,K.;Bengio,Y.EmpiricalEvaluationofGatedRecurrentNeuralNetworkson
SequenceModeling. arXiv2014, arXiv:1412.3555.
47. Zhan,T.-S.;Chen,S.-J.;Kao,C.-C.;Kuo,C.-L.;Chen, J.-L.;Lin,C.-H.Non-technical lossandpowerblackout
detectionunderadvancedmetering infrastructureusingacooperativegamebasedinferencemechanism.
IETGener. Transm.Dis. 2016,10, 873–882. [CrossRef]
©2018bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
81
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik