Seite - 99 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 99 -
Text der Seite - 99 -
Energies2018,11, 3442
energybecomesoneof the topfocusandanadditionalmajor issue insustainable improvementand
alsoa long-termsecurity [3]. Managingenergy consumptionandenergy resources inparallel has
becomevery important amongenergyplanners andpolicy framers. Thusan incorporatedenergy
administrationapproach isvital for thesustainable improvementof India.Modelshaveturnedout
to be the standard tools in energy planning. For energymodelling, energy forecasting is a basic
necessaryrequirement. Thisemphasizes thesignificanceofenergyforecasting.Demandforecast is
similarlyavital job for theeffectual functionandsettingupofsystems. Forecastscanbecataloguedas
long-term,mediumandshort-termdependinguponthe time. Long-termprediction,generallykeep
upacorrespondence toseveralmonths toevenseveraldecades to the front.Overvaluedelectricity
and energy consumption forecastwill result in heedless venture in the erectionof surpluspower
amenitiesandother inventories;whereasundervaluingtheconsumptionmightendupwithdeficient
manufacturing,planningandwillnotbeabletobridgethegapwiththedemand. Shorttermforecasting
alwaysdrawsattentionand it is alsopayingattention inpoint forecasts. Density forecasts that is,
forecasts thatprovideapproximationof theprobabilitydistributionsof the likelyupcomingvaluesof
theconsumptionbeessential for long-termforecast. Intheliteraturearangeofforecastingpracticeshas
beenwitnessed in theearlierperiod,generallypresumptuousshortandmidtermforecasts. Toassess
theexecutionof thecomparativestudytherealandforecastedresultsarefiguredoutandthe forecasts
baseduponthedataobservedupto2017arealsoworkedout. Theoutcomeprovesgoodforeseeing
capabilityof theproposedmethodat forecastingthecountry’senergyconsumption.
The literature is actually huge with the number of competing models and some major
contributions among themare read. In support of perspective of single day orwith a reduction
in it,modelsemployingunivariate timeseriesmodels [4,5]andANN[6]arequite familiar. Someof
theresearchershaveusedforecastingmodelsandtechniques. Several forecastingmethodswereused
inenergyforecasting leadingtodifferent levelsofaccomplishment. Startingfromlinearregression,
multi-variateregressionandsoon, severalothermodelshavealsobeenused[7–9]. Timeseriesmodels
forvariousyearshavebeenofferedwithmultinomial, linearandalsoexponentialapproximation[10].
Mixed Integer Linear Programming model has been evolved for the optimized electricity
generationschemeplanningfor thecountry toreachapreciseCO2emissiontarget [11].Holt’smethod
wasusedtodetermine threedifferentcircumstancessuchasbusinessasusual, renewableenergyand
also regardinghow to conserve energy [12]. Long-termdynamic linearprogrammingmodelwas
considered tocalculate future investmentsofelectricityproduction technologiesofvery long-term
energyscenarios. LinearProgramming(LP)canbe implementedtosupport thechoiceof renewable
energytechnologytomeetCO2 emissionreductiontargets [13].Anestimationofdata-drivenmodels
wasperformedbyTardioli etal. at city level [14].Choietal. offersanextremedeeplearningmethod
toobtain improvedbuildingenergyconsumptionforecast [15].
Simple fuzzymodels incorporatingArtificial Intelligence techniqueshavebeenuseful to forecast
midtermenergy andalso thepeak load [16–18]. Anewwayof energydemand forecasting at an
intra-dayrulingusingsemiparametric regressionsmoothingwhichrelates for theyearlyandweather
conditionalcomponents is suggested.Dependenceupontheresidualseries isexplainedbyoneamong
the twomultiple variables time seriesmodels,with themeasurement identical to the quantity of
intra-dayrange. Theprofitof thisprocedure in theprocessof forecastingof: (i)Demandforheating
steamnetworkofoneof thedistrict inGermany; (ii) collectiveelectricitydemandinVictoria, a state in
Australia.Withbothstudiesaccounting formeteorological conditionscanperkupthepredictedvalue
significantly, sodo theapplicationof the timeseriesmodels. Amultivariatenon-linear regression
methodfor forecasting themid-termenergypowersystems inyearlybasisbycaptivating intoconcern
the correlation studyof the elected input variablesweighing factor and the training epoch that is
tobeused. Afine forecastingmodel is framedby [19] for thepower system inGreeceand for the
dissimilarcategoryof lowvoltageclients. Energyforecastingmodels in long-termbasisareplaying
key role, provided the concernofGHGdischargeand theexistingwant for evaluating choices for
reachingtheKyoto’sobjectiveasgivenby[20]whopaidattentionongassupplyandalsotheoilsupply
99
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik