Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 99 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 99 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 99 -

Bild der Seite - 99 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 99 -

Energies2018,11, 3442 energybecomesoneof the topfocusandanadditionalmajor issue insustainable improvementand alsoa long-termsecurity [3]. Managingenergy consumptionandenergy resources inparallel has becomevery important amongenergyplanners andpolicy framers. Thusan incorporatedenergy administrationapproach isvital for thesustainable improvementof India.Modelshaveturnedout to be the standard tools in energy planning. For energymodelling, energy forecasting is a basic necessaryrequirement. Thisemphasizes thesignificanceofenergyforecasting.Demandforecast is similarlyavital job for theeffectual functionandsettingupofsystems. Forecastscanbecataloguedas long-term,mediumandshort-termdependinguponthe time. Long-termprediction,generallykeep upacorrespondence toseveralmonths toevenseveraldecades to the front.Overvaluedelectricity and energy consumption forecastwill result in heedless venture in the erectionof surpluspower amenitiesandother inventories;whereasundervaluingtheconsumptionmightendupwithdeficient manufacturing,planningandwillnotbeabletobridgethegapwiththedemand. Shorttermforecasting alwaysdrawsattentionand it is alsopayingattention inpoint forecasts. Density forecasts that is, forecasts thatprovideapproximationof theprobabilitydistributionsof the likelyupcomingvaluesof theconsumptionbeessential for long-termforecast. Intheliteraturearangeofforecastingpracticeshas beenwitnessed in theearlierperiod,generallypresumptuousshortandmidtermforecasts. Toassess theexecutionof thecomparativestudytherealandforecastedresultsarefiguredoutandthe forecasts baseduponthedataobservedupto2017arealsoworkedout. Theoutcomeprovesgoodforeseeing capabilityof theproposedmethodat forecastingthecountry’senergyconsumption. The literature is actually huge with the number of competing models and some major contributions among themare read. In support of perspective of single day orwith a reduction in it,modelsemployingunivariate timeseriesmodels [4,5]andANN[6]arequite familiar. Someof theresearchershaveusedforecastingmodelsandtechniques. Several forecastingmethodswereused inenergyforecasting leadingtodifferent levelsofaccomplishment. Startingfromlinearregression, multi-variateregressionandsoon, severalothermodelshavealsobeenused[7–9]. Timeseriesmodels forvariousyearshavebeenofferedwithmultinomial, linearandalsoexponentialapproximation[10]. Mixed Integer Linear Programming model has been evolved for the optimized electricity generationschemeplanningfor thecountry toreachapreciseCO2emissiontarget [11].Holt’smethod wasusedtodetermine threedifferentcircumstancessuchasbusinessasusual, renewableenergyand also regardinghow to conserve energy [12]. Long-termdynamic linearprogrammingmodelwas considered tocalculate future investmentsofelectricityproduction technologiesofvery long-term energyscenarios. LinearProgramming(LP)canbe implementedtosupport thechoiceof renewable energytechnologytomeetCO2 emissionreductiontargets [13].Anestimationofdata-drivenmodels wasperformedbyTardioli etal. at city level [14].Choietal. offersanextremedeeplearningmethod toobtain improvedbuildingenergyconsumptionforecast [15]. Simple fuzzymodels incorporatingArtificial Intelligence techniqueshavebeenuseful to forecast midtermenergy andalso thepeak load [16–18]. Anewwayof energydemand forecasting at an intra-dayrulingusingsemiparametric regressionsmoothingwhichrelates for theyearlyandweather conditionalcomponents is suggested.Dependenceupontheresidualseries isexplainedbyoneamong the twomultiple variables time seriesmodels,with themeasurement identical to the quantity of intra-dayrange. Theprofitof thisprocedure in theprocessof forecastingof: (i)Demandforheating steamnetworkofoneof thedistrict inGermany; (ii) collectiveelectricitydemandinVictoria, a state in Australia.Withbothstudiesaccounting formeteorological conditionscanperkupthepredictedvalue significantly, sodo theapplicationof the timeseriesmodels. Amultivariatenon-linear regression methodfor forecasting themid-termenergypowersystems inyearlybasisbycaptivating intoconcern the correlation studyof the elected input variablesweighing factor and the training epoch that is tobeused. Afine forecastingmodel is framedby [19] for thepower system inGreeceand for the dissimilarcategoryof lowvoltageclients. Energyforecastingmodels in long-termbasisareplaying key role, provided the concernofGHGdischargeand theexistingwant for evaluating choices for reachingtheKyoto’sobjectiveasgivenby[20]whopaidattentionongassupplyandalsotheoilsupply 99
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies