Seite - 100 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 100 -
Text der Seite - 100 -
Energies2018,11, 3442
projectionsandalsoprovideshelpful insight into the intricacyof forecasting thesameanddeveloping
ansystematic structure thatexplains themethodusedbyNaturalResources,Canadabysettingupoil
andgassupplypredictionsandresolve themodel for thesameandprovide the forecastsof theoil
supplyanddemandandalso thenaturalgas supplyanddemandfor theyear2020. Predicting the
energyneedfor theupcomingmarkets isamongthekeypolicymethodsusedby the international
policymakers. Autoregressive integratedmovingaverageandSeasonal autoregressive integrated
movingaverageprocedure is employed toguessTurkey’s energydemand in future fromtheyear
2005 to 2020 by [21]. Autoregressive IntegratedMovingAverage forecasting of the overall prime
energydemandwasmoresteadfastover thesummingupof the individualpredictions. Theresults
areasignof theaverageyearly increaseratesofentityenergyresourcesandtheoverallprimeenergy
will diminish exceptwoodandbio remains to holdpessimistic growth rate. Anovelmethod for
predicting therising trendinanoptimizedunivariatediscretegreyforecastingmethodisassumedto
predict thesumofenergymakingaswellasutilizationandanewMarkovmodelbuiltuponquadratic
programmingtechnique isprojectedforpredictingtheenergyproductionandconsumptiontrendin
Chinafor theyear2015and2020. Theprojectedmodelsareable toefficiently imitateandpredict the
overallquantityandstructureofenergyproductionandconsumption[22]. Topredictenergyusage in
Jordanusingyearlydata for1976–2008, ref. [23]usedANNanalyses. Four independentvariablesviz.
Population,exports,GDPandimportsareemployedtopredict theenergyutility. Theoutcometells
that thepredictableenergyuseforJordanwillget to8349,9269,10,189Ktoefortheyears2015,2020and
2025respectively. TheauthorsperformenergymodellingandforecastingofTurkey’sexistingneed
forevaluatingchoices formeeting thesocio-economicvariablesusingregressionandartificialneural
networks. Fourdissimilarrepresentationsincludingdifferentvariableswereusedforthispurpose.Asa
result,Model2wasfoundtobetheappropriateANNmodelcomprisingfour independentvariables
tocompetentlyguesstimateTurkey’senergyconsumption.Andthemodelenvisionedhealthier than
that of the regressivemodels and also the additional threemodels fromANN[24]. An inclusive
forecasting solution is portrayedbyHyndmanet al. [25]. The author reveals andemphasizes the
significance topreventmyocardiumdysfunction,which is themostgeneralwayofdeathglobally.
He says 50,000,000 people are vulnerable to cardiac diseases around theworld. He collected 744
fragmentsofECGsignals forone lead,MLII, from29patientsandheproposedanewmodelwhich
comprisedof longer fragments revealsofECGsignalandthespectraldensitywasestimatedusing
Welchsignificance topreventmyocardiumdysfunctionandenables theefficient recognitionofheart
disorders [26]. Plawieketal. comparesselectedapproximationsoffiveconcentration levelsofphenol.
Thesemiconductorgassensors’outcomeformedinputvectors for furtherwork. Priordataprocessing
encompassedprincipal componentanalysis,datastandardizationanddatanormalization inaddition
todatareduction.Ninesystemsweremade intoasinglesystemusingfuzzysystems,neuralnetworks
andalsosomehybridsystems. Everysystemwasvalidateduponthecomplexityandaccuracy. By
thecombinationof the threeprincipalcomponents the inputvectorwas formed. Theyappliedand
compared asmany as nineCImodels for the phenol concentration analysis developed from the
metaloxidesensorusingsignals [27]. TheauthorsproposeMARKALmodelwhichtakescareof the
allocations forvariousenergysources in India, for theBusinessAsUsual (BAU)scenarioandfor the
caseofexploitationofenergy. In thisscenario, thedemandforelectricalenergywill shootupevery
yearunto5000bKwhof the installedcapacitywithmajorclientsbeing thedomestic, industrialand
the service sectors [28]. So as toobtain accurate andenhancedenergy consumption for buildings,
extremedeep learning approach is given in this article. Themodel proposed clubs stacked auto
encoderswith themachine learningtoexploit its characteristics. Toobtainprecisepredictionresults
ELMisusedasapredictor. Thepartialautocorrelationanalysismethodisadoptedtodeterminethe
inputvariablesof thisdeeplearningmodel [29]. In Italy the influenceofeconomicanddemographic
variablesontheyearlyelectricityconsumptionwasexaminedwith the intention todevelop long-term
electricityconsumptionmodel. Forecastingmodelsweredevelopedusingdifferent regressionmodels
asgrossdomesticproductandother inputvariables [30]. Turkey’senergyconsumptionwasforecasted
100
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik