Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 100 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 100 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 100 -

Bild der Seite - 100 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 100 -

Energies2018,11, 3442 projectionsandalsoprovideshelpful insight into the intricacyof forecasting thesameanddeveloping ansystematic structure thatexplains themethodusedbyNaturalResources,Canadabysettingupoil andgassupplypredictionsandresolve themodel for thesameandprovide the forecastsof theoil supplyanddemandandalso thenaturalgas supplyanddemandfor theyear2020. Predicting the energyneedfor theupcomingmarkets isamongthekeypolicymethodsusedby the international policymakers. Autoregressive integratedmovingaverageandSeasonal autoregressive integrated movingaverageprocedure is employed toguessTurkey’s energydemand in future fromtheyear 2005 to 2020 by [21]. Autoregressive IntegratedMovingAverage forecasting of the overall prime energydemandwasmoresteadfastover thesummingupof the individualpredictions. Theresults areasignof theaverageyearly increaseratesofentityenergyresourcesandtheoverallprimeenergy will diminish exceptwoodandbio remains to holdpessimistic growth rate. Anovelmethod for predicting therising trendinanoptimizedunivariatediscretegreyforecastingmethodisassumedto predict thesumofenergymakingaswellasutilizationandanewMarkovmodelbuiltuponquadratic programmingtechnique isprojectedforpredictingtheenergyproductionandconsumptiontrendin Chinafor theyear2015and2020. Theprojectedmodelsareable toefficiently imitateandpredict the overallquantityandstructureofenergyproductionandconsumption[22]. Topredictenergyusage in Jordanusingyearlydata for1976–2008, ref. [23]usedANNanalyses. Four independentvariablesviz. Population,exports,GDPandimportsareemployedtopredict theenergyutility. Theoutcometells that thepredictableenergyuseforJordanwillget to8349,9269,10,189Ktoefortheyears2015,2020and 2025respectively. TheauthorsperformenergymodellingandforecastingofTurkey’sexistingneed forevaluatingchoices formeeting thesocio-economicvariablesusingregressionandartificialneural networks. Fourdissimilarrepresentationsincludingdifferentvariableswereusedforthispurpose.Asa result,Model2wasfoundtobetheappropriateANNmodelcomprisingfour independentvariables tocompetentlyguesstimateTurkey’senergyconsumption.Andthemodelenvisionedhealthier than that of the regressivemodels and also the additional threemodels fromANN[24]. An inclusive forecasting solution is portrayedbyHyndmanet al. [25]. The author reveals andemphasizes the significance topreventmyocardiumdysfunction,which is themostgeneralwayofdeathglobally. He says 50,000,000 people are vulnerable to cardiac diseases around theworld. He collected 744 fragmentsofECGsignals forone lead,MLII, from29patientsandheproposedanewmodelwhich comprisedof longer fragments revealsofECGsignalandthespectraldensitywasestimatedusing Welchsignificance topreventmyocardiumdysfunctionandenables theefficient recognitionofheart disorders [26]. Plawieketal. comparesselectedapproximationsoffiveconcentration levelsofphenol. Thesemiconductorgassensors’outcomeformedinputvectors for furtherwork. Priordataprocessing encompassedprincipal componentanalysis,datastandardizationanddatanormalization inaddition todatareduction.Ninesystemsweremade intoasinglesystemusingfuzzysystems,neuralnetworks andalsosomehybridsystems. Everysystemwasvalidateduponthecomplexityandaccuracy. By thecombinationof the threeprincipalcomponents the inputvectorwas formed. Theyappliedand compared asmany as nineCImodels for the phenol concentration analysis developed from the metaloxidesensorusingsignals [27]. TheauthorsproposeMARKALmodelwhichtakescareof the allocations forvariousenergysources in India, for theBusinessAsUsual (BAU)scenarioandfor the caseofexploitationofenergy. In thisscenario, thedemandforelectricalenergywill shootupevery yearunto5000bKwhof the installedcapacitywithmajorclientsbeing thedomestic, industrialand the service sectors [28]. So as toobtain accurate andenhancedenergy consumption for buildings, extremedeep learning approach is given in this article. Themodel proposed clubs stacked auto encoderswith themachine learningtoexploit its characteristics. Toobtainprecisepredictionresults ELMisusedasapredictor. Thepartialautocorrelationanalysismethodisadoptedtodeterminethe inputvariablesof thisdeeplearningmodel [29]. In Italy the influenceofeconomicanddemographic variablesontheyearlyelectricityconsumptionwasexaminedwith the intention todevelop long-term electricityconsumptionmodel. Forecastingmodelsweredevelopedusingdifferent regressionmodels asgrossdomesticproductandother inputvariables [30]. Turkey’senergyconsumptionwasforecasted 100
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies