Seite - 101 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 101 -
Text der Seite - 101 -
Energies2018,11, 3442
basedonthedemographicandsocio-economicvariablesviz.,GDP,population, import, exportand
employmentusingregressionandANN[31].
Machine learning is one of the effective methods for pattern recognition in big data.
These algorithmsfind thepatterns in the data bynature andhelpmaking better predictions and
critical decisions in Energy load, peak and price forecasting, image processing, face recognition,
motionandobjectdetection, tumourdetection,predictivemaintenance,natural languageprocessing.
Gajowniczeketal. hasproposedadataminingtechniquetofindout theelectricitypeak loadfor the
countrybyrepresentingthesameasapatternrecognitionresearchproblemrather thanatimeseries
forecastingproblembyusingANN.Themaininnovationisthattheydetect96.2%ofthepeakelectricity
loadaccuratelyup toadayahead [32]. Singhet al. alsopresentedadataminingmodel topredict
the trendinenergyconsumptionpattern thatdescribe thedomesticdeviceusage inconnectionwith
hourly,daily,weekly,monthlyyearlybasisaswellasdomesticdevice todomesticdevice linkages ina
house. Theyproposedunsuperviseddataclusteringandfrequentpatternmininganalysisonenergy
timeseries. Bayesiannetworkpredictionwasreferredforenergyusageforecasting. Theaccuracyof
theresultsoutperformedSVMandMLP’saccuracyof81.82%,85.90%and89.58%for25%,50%and
75%of thesizeof thedatausedfor trainingrespectively [33].
Thus the literature reviewof threedecades reveals thatvarious technologiesandapplications
wereusedtopredictenergyconsumption invarioussectorswhichhelpedustoutilize theproposed
approach incomputingtheenergyconsumptionfor India.
Themaincontributionof thisarticle is that itprovides
• Apoint forecast for the total electricity consumption for the upcoming years up to 2030 is
determinedwhich in turnwillhelp theenergyplanning inaholisticapproachfor thenation.
• Aninsight to thepolicymakersatbridgingthegapbetweentheforecastedandtheactualdata
for future.
• Themajorcontributionof thearticle is that it emphasizes theresearchers toget toknowthebasic
statisticalmodelsbeforeproceedingto theadvancedpackages.
The goal of the study is to forecast the short-termTECof India using the basic and reliable
methodologieswhichseemstobemuchbetter thantheadvancedmethods in forecastingtheenergy
consumptionof India. Thecorrespondingauthorhasdoneaforecastofenergyconsumptionofastate
in India,TamilNadu, inasmallerscaleduringhispost-graduation;whichactually is themotivationof
theresearch.Apart fromthat theauthorsreviewedmanystudiespertainingtoenergyconsumption
ofTurkey, JordanandChinaandso forth. whichmotivated themtoundertake thestudy for India.
Dr. Iniyan is theResearch supervisor of the correspondingauthor and is aveteran in thisfieldof
energyplanning,whohas takenupvariousprojectsandisalsoavoraciouspublisherandisoneof
themajorsourcesof inspiration. Thedatausedfor theanalyses is sometimescarriedover fromthe
year1970. Forecastedoutcomereveal that itholdsgoodonthehistoricaldata takenfor theanalysis.
With the interventionofnewmethods, thereareareas forprobablepotentialenhancement.Anadded
region forprogresswouldbe tooptimize the forecast further. For India theenergyconsumption is
forecastedfor theyear2030andthisshallbedoneevenforyearsdownthe lanefromthenonthat is,
longtimeforecasting.
2.MaterialsandMethods
Data drivenmodels are those which use available prior data to forecast energy behaviour.
Toperformthis, adatabase isestablishedto train themodels,bycombiningdissimilar techniques for
predictingtheenergyconsumption.Amongthedatadrivenmodels themostpopularareblack-box
basedapproacheswhichshallbeusedforenergypredictionandforecastinginwhichregressionmodel,
multiple linear regressionmodel, decision trees,ANN, support vectormachineandvariousother
optimization techniquesshall alsobeemployed. Byutilizing theblack-boxapproachthepresentstudy
isperformedwiththemajorobjectiveofpredictingtheTotalElectricityConsumption(TEC)inindustry,
101
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik