Seite - 102 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 102 -
Text der Seite - 102 -
Energies2018,11, 3442
agriculture, domestic, commercial, traction railways and other sectors of India for the year 2030;
using linearprogramming,multiple linearprogramming,correlation,exponential smoothing,Holt’s,
Brown’sandexpertmodelusingthe independentvariablesviz.,population,GDPandGDP/capita.
GDPandpopulationare twovital independentvariableswhichareproventobeplayingan important
role inenergy load forecasting in the literatureamongvarious countries. Bothof thevariables are
closely,positivelyandcomparativelyhighlycorrelatedwithenergyconsumption. Thepredictedvalue
ofTECiscomparedto thatof theactualvalueofEnergyStatisticsdataof2017.
This study is also attempted to get back to the basics and reliablemethodologieswhich are
sometimesmuchbetterthantheadvancedmethodswhicharebasicallybuiltuponthesemethodologies
forsomeof thesimplekeyresearchproblemssuchas forecasting theenergyconsumptionofRepublic
India. Nevertheless severalotheradvancedandmultifaceted techniquesarealso inplace. Thekey
featuresare (a) itprovidesapoint forecast for theenergyconsumptionvalues for theupcomingyears
withdemonstrated errors and (b) the gapbetween the forecasted andactual data are analysed in
close intervals. Thedataused for the analyses is consideredonly from the early 1960s and1970s.
With the interventionofnewmethods, thereareareas forprobablepotential enhancement innear
future.Anaddedregionforprogresswouldbetooptimize the forecast further. For India theenergy
consumption is forecastedfor theyear2030andthis shallbedoneevenforyearsdownthe lane from
thenon that is, long time forecasting. The softwareused in the analyses is SPSSwhich stands for
‘StatisticalPackagefortheSocialSciences’whichwasdevelopedbyIBM.Thevariouscurveestimations
andotheranalysesusedforforecastingiscarriedoutbyIBMSPSSStatistics20. TheLinear,Compound,
LogarithmicandPowercurvesarealsofittedusingthis tool.MicrosoftExcel isalsousedforvarious
otheranalyses. Thedeviceonwhichtheanalysis iscarriedoutconfigures2.00GHzIntelCore2Duo
Processor,withamemoryof4096MBandaharddriveof320GB.
Total EnergyConsumption for theperiod1960–2013 for sectors suchas industry, agriculture,
commercial, domestic, traction railways and otherswere obtained fromvarious energy statistics
reportsofMinistryofStatisticsandProgrammeImplementation (MOSPI),GoI.Theyearwisedata for
thepopulation,GDPpercapitaandGDPwerealsoobtained fromvariousother sourcesandother
differentdepartmentsof theGoI [34].
After the independence of the country, that is, in 1947 theTEC is observed to be 4182GwH.
At that timethedomestic sectorconsumedaround10%of theoverallandindustrial sectorconsumed
almost71%, these twowere themajorplayers till theendof the3rdplan.Duringthe1968–1969 that is,
duringthe3rdAnnualplanthedomestic sectorexperiencedadipcomparedto thatof theagriculture
sectorandtheIndustrialandagriculturesectorwere foundtobethemajorconsumers till theendof
the9thplanthat is, 2001–2002.Duringthatpointof time industrial sectorconsumedaround43%and
theagriculturesectorengulfed21.8%which is just shortofdomesticsector21.27%.Againfromthe
endof the19thplan till theendof the12thplan that is, from2001–2002 to2016–2017 thedomestic
sectoragainstartedconsumingmorecomparedto theagriculturesectorwhichwasfoundtobe24.11%
comparedtoagriculture’s18.01%.Nevertheless the Industrieshavealwaysbeenthemajorconsumer
since independence tilldateeventhoughadecreasingtrendisnoticedoverall. Thetractionsector in
Indiahasalways followedadecreasingtrendapart fromafewperiodswhichhasalsoshownonlya
feeble increase. TheMiscellaneoussector (others)has increasedlately to6.45%since independence
compared to its5.24%eventhough it isnotakeyconsumer. This isanoverviewof thesectorwise
totalenergyconsumptionfor Indiasince1947asdemonstrated inFigure1.
102
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik