Seite - 107 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 107 -
Text der Seite - 107 -
Energies2018,11, 3442
3.2.MultipleLinearRegression
Toforecast theTECofelectricityfor2030,multiple linearregressionmethodisusednow,takingin
account the yearlyGDPper capita, GDPandhistorical populationdata, as in the case of Turkey.
Duringmostof thesituations,multiple independentvariablesmightbeusedtopredict thesignificance
of a dependent variable forwhichweusemultiple regression. Inmultiple regression, GDP and
Populationare takensimultaneouslyas thepredictingvariables.Multiplevariable regressionanalysis
establishes a relationshipbetween adependent variable (in thisworkTotal EnergyConsumption
(TEC))andtwoorevenmore thantwoindependentvariables that is, thepredictors,populationand
GDPutilizedanapplication techniqueforyearlyconsumptionforecastingalgorithmonthesmartnew
intelligentelectronicdevicesusingmultiple regressionmethodwhich isput intopractice inaddition
torecursive least square.
TEC=(332,023.240)Population+(302,638.253)GDP−185,039.015is theregressionequationfrom
Table4.
Table4.Summaryof themodelwithbothPopulationandGDPas thevariable.
Ind.Variable RSquare Std. Error Constant Slope Significance
Population 0.986 27,442.309 −185,039.015 332,023.240 0.000
GDP 0.986 27,442.309 −185,039.015 302,638.253 0.000
Withone independentvariable ofpopulation theR2 is 0.845 andwith that ofGDP it is 0.957,
whereaswith twoindependentvariablesGDPandpopulationcombined, inmultiple linear regression
theR2 increases to0.986. Thestandarderrorof46,784.201withonevariable,GDPdrops to27,442.309
withtwovariables. Lowerisbetter. TheGDP’sstandarderrorisalmostlessthanhalfofthepopulation’s
error. SoGDPisagain thebetterpredictor in termsofLinearMultipleRegression.
3.3. CorrelationAnalysis
Almostall the independentvariablesexhibitahigherdegreeofcorrelationagainst thedependent
variables, the analysis of correlation fromTable 5 illustrates that there is positivehigh correlation
betweenpopulationandTEC.ThePearsoncorrelationcoefficientisfoundtobe0.919. FromFigures6–8,
theanalysisofcorrelationbetweenGDPandTECproves that there isaveryhighpositivecorrelation.
ThePearsonCorrelationCoefficient is found tobe0.978Whereas the correlationbetweenGDPper
capitaandTECdemonstrates that there isapositivecomparatively lowcorrelationbetweenGDPand
TEC.TheCoefficient is foundtobe0.975.
Table5.CorrelationMatrix.
Variables TEC Outcome Direction
Population 0.919 Highcorrelation Positive
GDP 0.978 Veryhighcorrelation Positive
GDP/Capita 0.975 Highcorrelation Positive
107
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik