Seite - 109 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 109 -
Text der Seite - 109 -
Energies2018,11, 3442
Figure8.PlotbetweenGDPperCapitaandTEC.
3.4. SimpleExponentialSmoothing
If the timeseriesvaryaboutbase level, simpleexponential smoothingmightbebring intoplay
tofindgoodestimatesorupcomingvalueof thesameseries. Todepict thisphenomenon, letAt the
smoothedaverageofa timeseries. Subsequent toobservingxt,At is theanticipate for thevalueof the
timeseriesduringanyupcomingperiod.
• At=smoothedaverageat theendof theepoch
• t= ft,
• k=for the forecastperiod(t+k)at theendof theepocht.
Chooseαso that itminimizes theMAD.
Thekey inequation insimpleexponential smoothing is that
At=αxt + (1−α)At−1 (1)
In theEquation (1),αwillbe thesmoothingconstant that suit 0<α>1. Tostart the forecasting
process,wehavegot tosetavalue forA0beforesurveyingx1. Typically,we letA0be theexperiential
value for theperiodrightawayprior thefirstperiod.Asamongmoving-average forecasts,we let ft,k
be theestimate forxt+k readyat thefinalperiodt.Then
At=ft,k (2)
Pretentious thatweattempt to forecastoneperiodahead, theerror for forecastingxt is
Et =xt− ft−1,1 =xt−At−1 (3)
Thesmoothingconstantvalueconsideredfor theanalysis isα=0.3,0.4and0.5.
TheTECfor2015wasfoundtobe746,882MWwhenα=0.3and793,765MWwhenα=0.4and
823,941.3MWwhenα=0.5.
109
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik