Seite - 113 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 113 -
Text der Seite - 113 -
Energies2018,11, 3442
3.7. CurveEstimation
3.7.1. LinearModel
ThisTable12presents theregressioncoefficientsandit is tobemadeanoteof that, thecorrelation
will be of negative valuewhen the slope is negative. The following linear regression equation is
determinedbythesecoefficients.
y=−31,615,881.66+16,010.77x
Table12.SummaryofLinearmodel.
Equation Summaryof theModel ParameterEstimates
R2 df1 df2 Sig. Constant
Linear 0.844 1 42 0.000 −31,615,881.66
Series1 in theFigure11 is theactualTECandtheseries2 is the linear forecast. The forecasted
value for the linearcurvefittingmodel for2030 is885,981.44MW.
ͲϮϬϬ͕ϬϬϬ
Ϭ
ϮϬϬ͕ϬϬϬ
ϰϬϬ͕ϬϬϬ
ϲϬϬ͕ϬϬϬ
ϴϬϬ͕ϬϬϬ
ϭ͕ϬϬϬ͕ϬϬϬ
^ĞƌŝĞƐϭ ^ĞƌŝĞƐϮ
Figure11.Chart forLinearmethod(1971–2030).
3.7.2.Compound/ExponentialModel
The Table 13 represents the regression coefficients and it is to be taken into account that,
the correlationwill be in the negative sidewhen the slope is of negative value. The following
regressionequation ismadeoutof thesecoefficients.
y=41,116.428e0.07x
Table13.Summaryof themodel.
Equation Summaryof theModel ParameterEstimates
R2 df1 df2 Sig. Constant
Comp./Exp. 0.991 1 42 0.000 41,116.428
113
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik