Seite - 116 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 116 -
Text der Seite - 116 -
Energies2018,11, 3442
AuthorContributions:Conceptualization,H.R. and I.S.;Methodology,H.R.; Software,H.R.;Validation,H.R.;
FormalAnalysis,H.R. and I.S.; Investigation, I.S. and J.B.A.; Resources,H.R. and J.B.A.;DataCuration,H.R.;
Writing-Original Draft Preparation, H.R.; Writing-Review&Editing, I.S. and J.B.A.; Supervision, I.S. H.R.,
IniyanSelvarasanandJ.B.A.haveaddedinputs indevelopingstrategies for totalenergyconsumptionforecasting
andthecollectionof thedatasetwas takencarebyH.R.All theauthorswere involvedindraftingandrevising
themanuscript.
Funding:This researchreceivednoexternal funding.
Acknowledgments:ThecorrespondingauthorïŹrst thanks theAlMighty.Henextexpresseshisgratitudetohis
parentswhohelphimgreatly tocarryouthis researchwork.Hewholeheartedly thankshis researchsupervisor
forhis invaluableguidance. Theauthors thankK.Padmanathan,whomadeavailablesomeof thedata.Healso
thanks theauthoritiesandfaculty inDepartmentofMechanicalengineering,AnnaUniversity,Chennai.
ConïŹictsof Interest:TheauthorsdeclarenoconïŹictof interest.
References
1. CentralElectricityAuthority.Availableonline:www.cea.nic.in (accessedon15October2018).
2. Kalyani,K.A.;Pandey,K.K.Waste toEnergyStatus in India:AShortReview.Renew. Sustain. EnergyRev.
2014,31, 113â120. [CrossRef]
3. Alagh,Y.K.TheFood,WaterandEnergy, InterLinkages forSustainableDevelopment in India.SouthAsian
Surv. 2010,17, 159â178. [CrossRef]
4. Taylor, J.W.Tripleseasonalmethodsforshort-termelectricitydemandforecasting.Eur. J.Oper. Res. 2010,
204, 139â152. [CrossRef]
5. Taylor, J.W.;McSharry,P.E.Short-TermLoadForecastingMethods:AnEvaluationBasedonEuropeanData.
IEEETrans. PowerSyst. 2008,22, 2213â2219. [CrossRef]
6. Park,D.C.;El-Sharkawi,M.A.;Marks,R.J.;Atlas,L.E.;Damborg,M.J.ElectricLoadForecastingUsingan
ArtiïŹcialNeuralNetwork. IEEETrans. PowerSyst. 1991,6, 442â449. [CrossRef]
7. Mohamed, Z.; Bodger, P. Forecasting electricity consumption in New Zealand using economic and
demographicvariables.Energy2005,30, 1833â1843. [CrossRef]
8. Haida,T.;Muto,S.Regressionbasedpeakloadforecastingusingatransformationtechnique. IEEETrans.
PowerSyst. 1994,9, 1788â1794. [CrossRef]
9. Mirasgedis, S.; Safaridis, Y.; Georgopoulou, E.; Lalas, D.P.; Moschovits, M.; Karagiannis, F.;
Papakonstantinou,D.Models formid-termelectricitydemandforecasting incorporatingweather inïŹuences.
Energy2006,31, 208â227. [CrossRef]
10. Da,X.; Jiangyan,Y.; Jilai,Y.Thephysicalseriesalgorithmofmid-longtermloadforecastingofpowersystems.
Electr. PowerSyst. Res. 2000,53, 31â37. [CrossRef]
11. Muis, Z.A.; Hashim, H.; Manan, Z.A.; Taha, F.M.; Douglas, P.L. Optimal planning of renewable
energyâIntegrated electricity generation schemeswithCO2 reduction target. Renew. Energy 2010, 35,
2562â2570. [CrossRef]
12. Kale, R.V.; Pohekar, S.D. Electricity demand and supply scenarios for Maharashtra (India) for 2030:
Anapplicationof longrangeenergyalternativesplanning.EnergyPolicy2014,72, 1â13. [CrossRef]
13. Messner,S.;Golodnikov,A.;Gritsevskii,A.AStochasticversionof thedynamic linearprogrammingmodel,
MESSAGEIII.Energy1996,21, 775â784. [CrossRef]
14. Tardioli,G.;Kerrigan,R.;Oates,M.;OâDonnell, J.;Finn,D.Datadrivenapproachesforpredictionofbuilding
energyconsumptionaturban level.EnergyProcedia2015,78, 3378â3383. [CrossRef]
15. Choi,M.S.;Xiang,L.;Lee,S.J.;Kim,T.W.AnInnovativeApplicationMethodofMonthlyLoadForecasting
forSmart IEDs. J.Electr. Eng. Technol. 2013,8, 984â990. [CrossRef]
16. Yalcinoz, T.; Eminoglu,U. Short termandmedium termpowerdistribution load forecastingbyneural
networks.EnergyConvers.Manag. 2005,46, 1393â1405. [CrossRef]
17. Chen,G.J.;Li,K.K.;Chung,T.S.;Sun,H.B.;Tang,G.Q.Applicationofan innovativecombinedforecasting
methodinpowersystemloadforecasting.Electr. PowerSyst. Res. 2001,59, 131â137. [CrossRef]
18. Mestekemper,T.;Kauermann,G.;Smith,M.S.Acomparisonofperiodicautoregressiveanddynamic factor
models in intradayenergydemandforecasting. Int. J.Forecast. 2013,29, 1â12. [CrossRef]
116
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik