Seite - 120 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 120 -
Text der Seite - 120 -
Energies2018,11, 3283
powerconsumptionreservemargin [5]. It includesdailyelectrical load,highestorpeakelectrical load,
andveryshort-termloadforecasting(VSTLF).Generally,STLFisusedtoregulate theenergysystem
from1htooneweek[7].Accordingly,daily loadforecasting isused in theenergyplanningfor the
nextonedaytooneweek[8,9].
Ahigher-educationbuildingcomplex, suchasauniversitycampus, iscomposedofabuilding
clusterwithahighelectrical load,andhence,hasbeena largeelectricpowerdistributionconsumer in
Korea [10–12]. In termsofoperationalcostmanagement, forecastingcanhelp indeterminingwhere,
ifany, savingscanbemade,aswellasuncoveringsysteminefficiencies [13]. In termsofscheduling,
forecastingcanbehelpful for improving theoperational efficiency, especially inanenergystorage
system(ESS)orrenewableenergy.
Forecasting the electrical load of a university campus is difficult due to its irregular power
consumptionpatterns. Suchpatternsaredeterminedbydiverse factors, suchas theacademicschedule,
social events, andnatural condition. Evenon thesamecampus, theelectrical loadpatternsamong
buildingsdiffer,dependingontheusageorpurpose. For instance, typical engineeringandscience
buildingsshowahighpowerconsumption,whiledormitorybuildingsshowalowpowerconsumption.
Thus, to accurately forecast the electrical loadofuniversity campus,wealsoneed to consider the
buildingtypeandpowerusagepatterns.
Byconsideringpowerconsumptionpatternsandvariousexternal factors together,manymachine
learningalgorithmshaveshownareasonableperformanceinshort-termloadforecasting[3,4,6,8,14–17].
However, evenmachine learningalgorithmswithahigherperformancehavedifficulty inmaking
accuratepredictionsatall times,becauseeachalgorithmadoptsadifferentweightingmethod[18].
Thus,wecansee that therewillalwaysberandomnessor inherentuncertainty ineveryprediction[19].
For instance,mostuniversitybuildings inKoreashowvariouselectrical loadpatternswhichdiffer,
dependingontheacademiccalendar. Furthermore,Koreacelebratesseveralholidays,suchasBuddha’s
birthdaysandKoreanThanksgivingdays, calledChuseok,duringthesemester,whicharecountedon
the lunarcalendar. Since thecampususuallyremainsclosedontheholidays, thepowerconsumption
of thecampusbecomesvery low. Insuchcases, it isdifficult forasingleexcellentalgorithmtomake
accuratepredictions forallpatterns.However,otheralgorithmscanmakeaccuratepredictions inareas
where thepreviousalgorithmhasbeenunable todoso. For thispurpose,agoodapproach is toapply
twoormorealgorithmstoconstructahybridprobabilistic forecastingmodel [14].Manyrecentstudies
haveaddressedahybridapproachforSTLF.Abdoosetal. [20]proposedahybridintelligentmethodfor
theshort-termloadforecastingof Iran’spowersystemusingwavelet transform(WT),Gram-Schmidt
(GS), andsupportvectormachine (SVM).Dongetal. [21]proposedahybriddata-drivenmodel to
predict thedaily total loadbasedonanensembleartificialneuralnetwork. Inasimilarway,Leeand
Hong[22]proposedahybridmodel for forecasting themonthlypower loadseveralmonthsahead
basedonadynamic and fuzzy time seriesmodel. Recently, probabilistic forecastinghas arisenas
an active topic and it couldprovide quantitativeuncertainty information,which canbeuseful to
manage its randomness in thepower systemoperation [23]. Xiao et al. [18]proposednonegative
constraint theory (NNCT)andartificial intelligence-basedcombinationmodels topredict futurewind
speedseriesof theChengderegion. Juradoetal. [24]proposedhybridmethodologies forelectrical
load forecasting inbuildingswithdifferentprofilesbasedonentropy-based feature selectionwith
AImethodologies. Fengetal. [25]developedanensemblemodel toproducebothdeterministicand
probabilisticwindforecasts thatconsistsofmultiplesinglemachine learningalgorithmsinthefirst
layerandblendingalgorithmsinthesecondlayer. Inourpreviousstudy[12],webuiltadailyelectrical
loadforecastmodelbasedonrandomforest. In this study, to improvethe forecastingperformanceof
thatmodel,wefirstclassify theelectrical loaddatabypatternsimilarityusingadecisiontree. Then,
weconstructahybridmodelbasedonrandomforestandmultilayerperceptronbyconsideringsimilar
timeseriespatterns.
Therestof thispaper isorganizedas follows. InSection2,we introduceseveralpreviousstudies
onthemachine learning-basedshort-termloadforecastingmodel. InSection3,wepresentall thesteps
120
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik