Seite - 121 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 121 -
Text der Seite - 121 -
Energies2018,11, 3283
forconstructingourhybridelectrical loadforecastingmodel indetail. InSection4,wedescribeseveral
metrics forperformanceacomparisonof loadforecastingmodels. InSection5,wedescribehowto
evaluate theperformanceofourmodelviaseveralexperimentsandshowsomeof theresults. Lastly,
inSection6,webrieflydiscuss theconclusion.
2.RelatedWork
So far, many researchers have attempted to construct STLF using variousmachine learning
algorithms. Vrablecová et al. [7] developed the suitability of an online support vector regression
(SVR)methodtoshort-termpower loadforecastingandpresentedacomparisonof10state-of-the-art
forecastingmethods in termsofaccuracy for thepublic IrishCommissionforEnergyRegulation (CER)
dataset. TsoandYau[26]conductedweeklypowerconsumptionpredictionforhouseholds inHong
Kongbasedonanartificial neural network (ANN),multiple regression (MR), andadecision tree
(DT).Theybuilt the inputvariablesof theirpredictionmodelbysurveyingtheapproximatepower
consumption fordiverse electronic products, such as air conditioning, lighting, anddishwashing.
Jainetal. [27]proposedabuildingelectrical loadforecastingmodelbasedonSVR.Electrical loaddata
werecollectedfrommulti-familyresidentialbuildings locatedat theColumbiaUniversitycampus in
NewYorkCity.Grolingeretal. [28]proposedtwoelectrical loadforecastingmodelsbasedonANN
andSVRtoconsiderbothevents andexternal factors andperformedelectrical load forecastingby
day,hour, and15-min intervals fora largeentertainmentbuilding. Amberetal. [29]proposed two
forecastingmodels,geneticprogramming(GP)andMR, to forecast thedailypowerconsumptionof
anadministrationbuilding inLondon.Rodriguesetal. [30]performedforecastingmethodsofdaily
andhourlyelectrical loadbyusingANN.Theyusedadatabasewithconsumptionrecords, loggedin
93realhouseholds inLisbon,Portugal. Efendietal. [31]proposedanewapproachfordeterminingthe
linguisticout-sample forecastingbyusingthe indexnumbersof the linguisticsapproach. Theyused
thedaily loaddata fromtheNationalElectricityBoardofMalaysiaasanempirical study.
Recently, ahybridprediction schemeusingmultiplemachine learningalgorithmshas shown
a better performance than the conventional prediction scheme using a single machine learning
algorithm [14]. The hybridmodel aims to provide the best possible prediction performance by
automaticallymanagingthestrengthsandweaknessesofeachbasemodel. Xiaoetal. [18]proposed
twocombinationmodels, thenonegative constraint theory (NNCT) and the artificial intelligence
algorithm,andshowedthat theycanalwaysachieveadesirable forecastingperformancecomparedto
the existing traditional combinationmodels. Jurado et al. [24] proposed a hybridmethodology
that combines feature selection based on entropies with soft computing and machine learning
approaches (i.e., fuzzy inductivereasoning, randomforest, andneuralnetworks) for threebuildings in
Barcelona.Abdoosetal. [20]proposedanewhybrid intelligentmethodforshort-termloadforecasting.
Theydecomposedtheelectrical loadsignal into twolevelsusingwavelet transformandthencreated
the training inputmatrices using thedecomposed signals and temperaturedata. After that, they
selected thedominant features using theGram–Schmidtmethod to reduce thedimensions of the
inputmatrix. They used SVMas the classifier core for learning patterns of the trainingmatrix.
Dongetal. [21]proposedanovelhybriddata-driven“PEK”model forpredicting thedaily total load
of thecityofShuyang,China. Theyconstructedthemodelbyusingvarious functionapproximates,
includingpartialmutual information(PMI)-based inputvariableselection,ensembleartificialneural
network (ENN)-basedoutput estimation, andK-nearest neighbor (KNN) regression-basedoutput
error estimation. Lee andHong [22] proposed a hybridmodel for forecasting the electrical load
severalmonthsaheadbasedonadynamic (i.e., air temperaturedependencyofpower load)anda
fuzzy time series approach. They tested their hybridmodelusingactual loaddataobtained from
theSeoulmetropolitanarea, andcompared itspredictionperformancewith thoseof theother two
dynamicmodels.
Previousstudiesonhybridforecastingmodelscompriseparameterselectionandoptimization
technique-basedcombinedapproaches. Thisapproachhas thedisadvantages that it isdependenton
121
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik