Seite - 125 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 125 -
Text der Seite - 125 -
Energies2018,11, 3283
electrical loaddata. However, theLSTMnetworks can reflectyesterday’s information for thenext
day’s forecast. Since thedaily load forecasting of a smart grid aims to be scheduleduntil after a
week,LSTMnetworksarenotsuitable forapplicationto thedaily loadforecastingbecause there isa
gapofsixdays. Furthermore, if theprediction isnotvalid, theLSTMmodelmethodcangiveabad
result. For instance,nationalholidays,quickclimatechange,andunexpected institution-relatedevents
canproduceunexpectedpowerconsumption. Therefore, theLSTMmodelalone isnot enough for
short-termloadforecastingdueto its simplestructureandweakness involatility. Eventually,asimilar
lifepatterncanbeobserveddependingonthedayoftheweek,whichinreturngivesasimilarelectrical
loadpattern. This studyuses theLSTMnetworksmethod to showthe repeatingpatternofpower
consumptionsdependingonthedayof theweek. The inputvariableperiodof the trainingdataset
iscomposedof theelectrical loadfrom2012to2015andthedependentvariableof the trainingset is
composedof theelectrical loadfrom2013to2015.Weperformed10-foldcross-validationonarolling
basis foroptimalhyper-parameterdetection.
3.3.DiscoveringSimilarTimeseriesPatterns
Sofar,diversemachine learningalgorithmshavebeenproposedtopredictelectrical load[1,3,6,14].
However, they showed different prediction performances depending on the various factors.
For instance, for timeseriesdata,onealgorithmgives thebestpredictionperformanceononesegment,
while for other segments, another algorithm can give the best performance. Hence, oneway to
improve theaccuracy in thiscase is tousemore thanonepredictivealgorithm.Weconsiderelectrical
loaddataas timeseriesdataandutilizeadecisiontree toclassify theelectrical loaddatabypattern
similarity. Decision trees [26,40] can handle both categorical and numerical data, and are highly
persuasivebecause theycanbeanalyzedthrougheachbranchof the tree,whichrepresents theprocess
of classificationorprediction. Inaddition, theyexhibit ahighexplanatorypowerbecause theycan
confirmwhich independentvariableshaveahigher impactwhenpredicting thevalueofadependent
or targetvariable.Ontheotherhand,continuousvariablesused in thepredictionofvaluesof the time
seriesareregardedasdiscontinuousvalues,andhence, thepredictionerrorsare likely tooccurnear
theboundaryofseparation.Hence,using thedecision tree,wedividecontinuousdependentvariables
intoseveral classeswithasimilarelectrical loadpattern. Todothis,weuse the trainingdataset from
theprevious threeyears.Weusethedailyelectrical loadas theattributeofclass labelordependent
variableandthecharacteristicsof the timeseriesas independentvariables, representingyear,month,
day,dayof theweek,holiday,andacademicyear.Detailsontheclassificationof timeseriesdatawill
beshownintheexperimental section.
3.4. BuildingaHybridForecastingModel
Toconstructourhybridpredictionmodel,wecombinebotharandomforestmodelandmultilayer
perceptronmodel. Randomforest isarepresentativeensemblemodel,whileMLPisarepresentative
deep learningmodel;both thesemodelshaveshownanexcellentperformance in forecastingelectrical
load[5,12,15–17].
Random forest [41,42] is an ensemblemethod for classification, regression, and other tasks.
It constructsmanydecision trees that canbeused to classify anew instance by themajority vote.
Eachdecisiontreenodeusesasubsetofattributesrandomlyselectedfromtheoriginal setofattributes.
Randomforest runsefficientlyonlargeamountsofdataandprovidesahighaccuracy[43]. Inaddition,
comparedtoothermachine learningalgorithmssuchasANNandSVR, it requires lessfine-tuningof
itshyper-parameters [16]. Thebasicparametersof randomforest includethe totalnumberof trees to
begenerated(nTree)andthedecision tree-relatedparameters (mTry), suchasminimumsplit andsplit
criteria [17]. In this study,wefindtheoptimalmTryandnTree forour forecastingmodelbyusingthe
trainingsetandthenverify theirperformanceusingthevalidationandtest set. Theauthors in [42]
suggestedthatarandomforest shouldhave64 to128 treesandweuse128 trees forourhybridSTLF
model. Inaddition, themTryvaluesusedfor this studyprovidedbyscikit-learnareas follows.
125
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik