Seite - 126 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 126 -
Text der Seite - 126 -
Energies2018,11, 3283
• Auto:maxfeatures=nfeatures.
• Sqrt:maxfeatures=sqrt (n features).
• Log2:maxfeatures= log2(nfeatures).
A typicalANNarchitecture, knownasamultilayerperceptron, is a typeofmachine learning
algorithmthat isanetworkof individualnodes, calledperceptrons,organized inaseriesof layers [5].
Each layer inMLP is categorized into three types: an input layer,which receives featuresused for
prediction; ahidden layer,wherehidden featuresare extracted; andanoutput layer,whichyields
thedeterminedresults.Amongthem, thehiddenlayerhasmanyfactorsaffectingperformance, such
as thenumberof layers, thenumberofnodes involved,andtheactivationfunctionof thenode[44].
Therefore, thenetworkperformancedependsonhowthehiddenlayer is configured. Inparticular, the
numberofhidden layersdetermines thedepthorshallownessof thenetwork. Inaddition, if there
aremore than twohidden layers, it is called adeepneural network (DNN) [45]. To establish our
MLP,weuse twohidden layerssincewedonot requiremanyinputvariables inourpredictionmodel.
In addition,weuse the same epochs andbatch size as theLSTMmodelwedescribedpreviously.
Furthermore,asanactivationfunction,weuseanexponential linearunit (ELU)without therectified
linearunit (ReLU),whichhasgainedincreasingpopularityrecently.However, itsmaindisadvantage
is that theperceptroncandie in the learningprocess. ELU[46] isanapproximate function introduced
toovercomethisdisadvantage,andcanbedefinedby:
f(x)= {
x ifx≥0
α(ex−1) ifx<0 . (2)
Thenext importantconsideration is tochoose thenumberofhiddennodes.Manystudieshave
beenconductedtodetermine theoptimalnumberofhiddennodes foragiventask [15,47,48], andwe
decidedtousetwodifferenthiddennodecounts: thenumberof inputvariablesand2/3of thenumber
of inputvariables. Sinceweusenine inputvariables, thenumbersofhiddennodeswewilluseare
9and6. Sinceourmodelhas twohidden layers,wecanconsider three configurations,depending
onthehiddennodesof thefirstandsecond layers: (9, 9), (9, 6), and(6, 6). As in therandomforest,
weevaluate these configurationsusing the trainingdata for eachbuildingcluster and identify the
configuration thatgives thebestpredictionaccuracy.After that,wecompare thebestMLPmodelwith
therandomforestmodel foreachcluster type.
3.5. TimeseriesCross-Validation
Toconstructa forecastingmodel, thedataset isusuallydivided intoa trainingsetand test set.
Then, the trainingset isused inbuildingaforecastingmodelandthe test set isused inevaluating the
resultingmodel.However, intraditional timeseriesforecastingtechniques, thepredictionperformance
ispooreras the intervalbetweenthe trainingandforecastingtimes increases. Toalleviate thisproblem,
weapplythetimeseriescross-validation(TSCV)basedontherollingforecastingorigin[49].Avariation
of this approach focuses ona singlepredictionhorizon for each test set. In this approach,weuse
various trainingsets, eachcontainingoneextraobservationthanthepreviousone.Wecalculate the
predictionaccuracybyfirstmeasuring theaccuracy foreachtest setandthenaveragingtheresults
of all test sets. Thispaperproposes aone-week (sumfrom145h to168h) look-aheadviewof the
operation forsmartgrids. For this, a seven-step-aheadforecastingmodel isbuilt to forecast thepower
consumption at a single time (h+ 7+ i− 1) using the test setwith observations at several times
(1,2, . . . ,h+ i−1). Ifhobservationsarerequiredtoproduceareliable forecast, then, for the totalT
observations, theprocessworksas follows.
For i=1 toT−h−6:
(1) Select theobservationat timeh+7+i−1 for the test set;
(2) Consider theobservationsat several times1,2, · · · , h+ i−1 toestimate the forecastingmodel;
126
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik