Seite - 127 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 127 -
Text der Seite - 127 -
Energies2018,11, 3283
(3) Calculate the7-steperroronthe forecast for timeh+7+i−1;
(4) Compute the forecastaccuracybasedontheerrorsobtained.
4. PerformanceMetrics
Toanalyze the forecastmodelperformance, severalmetrics, suchasmeanabsolutepercentage
error (MAPE), rootmeansquareerror (RMSE),andmeanabsoluteerror (MAE),areused,whichare
well-knownforrepresentingthepredictionaccuracy.
4.1.MeanAbsolutePercentageError
MAPEisameasureofpredictionaccuracyforconstructingfittedtimeseriesvalues instatistics,
specifically in trendestimation. Itusuallypresentsaccuracyasapercentageof theerrorandcanbe
easier tocomprehendthantheotherstatisticssince thisnumber isapercentage. It isknownthat the
MAPEishuge if theactualvalue isveryclose tozero.However, in thiswork,wedonothavesuch
values. Theformula forMAPEisshowninEquation(3),whereAt andFt are theactualandforecast
values, respectively. Inaddition,n is thenumberof timesobserved.
MAPE= 100
n n
∑
t=1 ∣∣∣∣At−FtAt ∣∣∣∣ (3)
4.2. RootMeanSquareError
RMSE(alsocalledtherootmeansquaredeviation,RMSD)isusedtoaggregate theresiduals intoa
singlemeasureofpredictiveability. Thesquarerootof themeansquareerror,asshowninEquation(4),
is the forecastvalueFt andanactualvalueAt. Themeansquarestandarddeviationof the forecast
valueFt for theactualvalueAt is thesquarerootofRMSE.Foranunbiasedestimator,RMSEis the
squarerootof thevariance,whichdenotes thestandarderror.
RMSE= √
∑ni=1(Ft−At)2
n (4)
4.3.MeanAbsoluteError
Instatistics,MAEisusedtoevaluatehowclose forecastsorpredictionsare to theactualoutcomes.
It is calculatedbyaveraging theabsolutedifferencesbetween thepredictionvaluesand theactual
observedvalues.MAEisdefinedasshowninEquation(5),whereFt is the forecastvalueandAt is the
actualvalue.
MAE= 1
n n
∑
i=1 |Ft−At| (5)
5. ExperimentalResults
Toevaluate theperformanceofourhybridforecastmodel,wecarriedoutseveralexperiments.
We performed preprocessing for the dataset in the Python environment and performed forecast
modelingusingscikit-learn [50],TensorFlow[51], andKeras [52].Weusedsixyearsofdailyelectrical
loaddata from2012 to 2017. Specifically, weused electrical loaddata of 2012 to configure input
variables fora trainingset.Data from2013to2015wasusedas the trainingset, thedataof2016was
thevalidationset, andthedataof2017was the test set.
5.1.DatasetDescription
Table2showsthestatisticsof theelectricconsumptiondataforeachcluster, includingthenumber
ofvalidcases,mean, andstandarddeviation. Asshownin the table,ClusterBhasahigherpower
consumptionandwiderdeviationthanclustersAandC.
127
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik