Seite - 130 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 130 -
Text der Seite - 130 -
Energies2018,11, 3283
hybridmodelwehaveconstructed. Table5 is thepredictionresult composedofMLP,andMAPEis
usedasameasureofpredictionaccuracyandthepredictedresultswith thebestaccuracyaremarked
inbold.Asshowninthe table,overall, amodelconsistingofnineandninenodes ineachhidden layer
showedthebestperformance.Althoughthenineandsixnodes ineachhiddenlayershowedabetter
performance inClusterA, themodelconsistingofnineandninenodeswasselectedtogeneralize the
predictivemodel.
(a) Cluster A
(b) Cluster B
(c) Cluster C
Figure5.Resultsof similar timeseriesclassificationsusingdecisiontrees.
Table5.MAPEresultsof themultilayerperceptron.
Cluster# NumberofNeuronsinEachLayer
9-6-6-1 9-9-6-1 9-9-9-1
ClusterA 3.856 3.767 3.936
ClusterB 4.869 5.076 4.424
ClusterC 3.366 3.390 3.205
130
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik