Seite - 131 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 131 -
Text der Seite - 131 -
Energies2018,11, 3283
Table6showstheMAPEofrandomforest foreachclusterunderdifferentmTryandthepredicted
resultswith thebest accuracy aremarked inbold. Since the input variable is 9, sqrt and log2 are
recognizedas3andtheresultsare thesame.Wechoose thesqrt that is commonlyused[16,43].
Table6.MAPEresultsof randomforest.
Cluster# NumberofFeatures
Auto sqrt log2
ClusterA 3.983 3.945 3.945
ClusterB 4.900 4.684 4.684
ClusterC 3.579 3.266 3.266
Figure6a–cshowtheuseof forestsof trees toevaluate the importanceof features inanartificial
classificationtask. Thebluebarsdenotethefeature importanceof theforest,alongwiththeir inter-trees
variability. In thefigure,LSTM,whichrefers to theLSTM-RNNthat reflects the trendofdayof the
week,has thehighest impactonthemodelconfigurationforall clusters.Other featureshavedifferent
impacts,dependingonthecluster type.
(a) Cluster A
(b) Cluster B
Figure6.Cont.
131
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik