Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 137 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 137 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 137 -

Bild der Seite - 137 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 137 -

Energies2018,11, 3283 13. Palchak,D.;Suryanarayanan,S.;Zimmerle,D.AnArtiïŹcialNeuralNetwork inShort-TermElectricalLoad ForecastingofaUniversityCampus:ACaseStudy. J.EnergyResour. Technol. 2013,135, 032001. [CrossRef] 14. Wang,Z.;Srinivasan,R.S.AreviewofartiïŹcial intelligencebasedbuildingenergyuseprediction:Contrasting thecapabilitiesof singleandensemblepredictionmodels.Renew. Sustain. EnergyRev. 2016,75, 796–808. [CrossRef] 15. Hippert,H.S.;Pedreira,C.E.;Souza,R.C.Neuralnetworks forshort-termloadforecasting:Areviewand evaluation. IEEETrans. PowerSyst. 2001,16, 44–55. [CrossRef] 16. Lahouar, A.; Slama, J.B.H. Day-ahead load forecast using random forest and expert input selection. EnergyConvers.Manag. 2015,103, 1040–1051. [CrossRef] 17. Ahmad,M.W.;Mourshed,M.;Rezgui,Y.TreesvsNeurons:ComparisonbetweenrandomforestandANN forhigh-resolutionpredictionofbuildingenergyconsumption.EnergyBuild. 2017,147, 77–89. [CrossRef] 18. Xiao,L.;Wang, J.;Dong,Y.;Wu, J.Combinedforecastingmodels forwindenergyforecasting:Acasestudy inChina.Renew. Sustain. EnergyRev. 2015,44, 271–288. [CrossRef] 19. Pinson,P.;Kariniotakis,G.Conditionalpredictionintervalsofwindpowergeneration. IEEETrans. PowerSyst. 2010,25, 1845–1856. [CrossRef] 20. Abdoos,A.;Hemmati,M.;Abdoos,A.A. Short term load forecastingusingahybrid intelligentmethod. Knowl. BasedSyst. 2015,76, 139–147. [CrossRef] 21. Dong, J.-r.; Zheng, C.-y.; Kan, G.-y.; Zhao,M.; Wen, J.; Yu, J. Applying the ensemble artiïŹcial neural network-basedhybriddata-drivenmodel todaily total load forecasting. NeuralComput. Appl. 2015, 26, 603–611. [CrossRef] 22. Lee,W.-J.;Hong, J.Ahybriddynamicandfuzzy timeseriesmodel formid-termpower loadforecasting. Int. J.Electr. Power. EnergySyst. 2015,64, 1057–1062. [CrossRef] 23. Zhang,T.;Wang, J.K-nearestneighborsandakerneldensityestimator forGEFCom2014probabilisticwind power forecasting. Int. J.Forecast. 2016,32, 1074–1080. [CrossRef] 24. Jurado, S.; Nebot, À.; Mugica, F.; Avellana, N. Hybridmethodologies for electricity load forecasting: Entropy-based feature selectionwithmachine learningandsoft computing techniques. Energy2015, 86, 276–291. [CrossRef] 25. Feng,C.; Cui,M.; Hodge, B.-M.; Zhang, J. Adata-drivenmulti-modelmethodologywithdeep feature selectionforshort-termwindforecasting.Appl. Energy2017,190, 1245–1257. [CrossRef] 26. Tso,G.K.;Yau,K.K.Predictingelectricityenergyconsumption:Acomparisonofregressionanalysis,decision treeandneuralnetworks.Energy2007,32, 1761–1768. [CrossRef] 27. Jain,R.K.;Smith,K.M.;Culligan,P.J.;Taylor, J.E.Forecastingenergyconsumptionofmulti-familyresidential buildingsusing supportvector regression: Investigating the impactof temporal andspatialmonitoring granularityonperformanceaccuracy.Appl. Energy2014,123, 168–178. [CrossRef] 28. Grolinger,K.;L’Heureux,A.;Capretz,M.A.;Seewald,L.Energyforecastingforeventvenues: Bigdataand predictionaccuracy.EnergyBuild. 2016,112, 222–233. [CrossRef] 29. Amber,K.;Aslam,M.;Hussain,S.Electricityconsumptionforecastingmodels foradministrationbuildings of theUKhighereducationsector.EnergyBuild. 2015,90, 127–136. [CrossRef] 30. Rodrigues,F.;Cardeira,C.;Calado, J.M.F.Thedailyandhourlyenergyconsumptionandloadforecasting usingartiïŹcialneuralnetworkmethod:Acasestudyusingasetof93households inPortugal.Energy2014, 62, 220–229. [CrossRef] 31. Efendi, R.; Ismail, Z.; Deris,M.M.Anew linguistic out-sample approach of fuzzy time series for daily forecastingofMalaysianelectricity loaddemand.Appl. SoftComput. 2015,28, 422–430. [CrossRef] 32. ISO Week Date. Available online: https://en.wikipedia.org/wiki/ISO_week_date (accessed on 19 October2018). 33. Holidays andObservances in SouthKorea in 2017. Available online: https://www.timeanddate.com/ holidays/south-korea/(accessedon28April2018). 34. Climate of Seoul. Available online: https://en.wikipedia.org/wiki/Climate_of_Seoul (accessed on 28 April2018). 35. Son,S.-Y.;Lee,S.-H.;Chung,K.;Lim,J.S.Featureselectionfordailypeakloadforecastingusinganeuro-fuzzy system.Multimed. ToolsAppl. 2015,74, 2321–2336. [CrossRef] 36. Kong,W.;Dong,Z.Y.; Jia,Y.;Hill,D.J.;Xu,Y.;Zhang,Y.Short-termresidential load forecastingbasedon LSTMrecurrentneuralnetwork. IEEETrans. SmartGrid2017. [CrossRef] 137
zurĂŒck zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies