Seite - 137 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 137 -
Text der Seite - 137 -
Energies2018,11, 3283
13. Palchak,D.;Suryanarayanan,S.;Zimmerle,D.AnArtiïŹcialNeuralNetwork inShort-TermElectricalLoad
ForecastingofaUniversityCampus:ACaseStudy. J.EnergyResour. Technol. 2013,135, 032001. [CrossRef]
14. Wang,Z.;Srinivasan,R.S.AreviewofartiïŹcial intelligencebasedbuildingenergyuseprediction:Contrasting
thecapabilitiesof singleandensemblepredictionmodels.Renew. Sustain. EnergyRev. 2016,75, 796â808.
[CrossRef]
15. Hippert,H.S.;Pedreira,C.E.;Souza,R.C.Neuralnetworks forshort-termloadforecasting:Areviewand
evaluation. IEEETrans. PowerSyst. 2001,16, 44â55. [CrossRef]
16. Lahouar, A.; Slama, J.B.H. Day-ahead load forecast using random forest and expert input selection.
EnergyConvers.Manag. 2015,103, 1040â1051. [CrossRef]
17. Ahmad,M.W.;Mourshed,M.;Rezgui,Y.TreesvsNeurons:ComparisonbetweenrandomforestandANN
forhigh-resolutionpredictionofbuildingenergyconsumption.EnergyBuild. 2017,147, 77â89. [CrossRef]
18. Xiao,L.;Wang, J.;Dong,Y.;Wu, J.Combinedforecastingmodels forwindenergyforecasting:Acasestudy
inChina.Renew. Sustain. EnergyRev. 2015,44, 271â288. [CrossRef]
19. Pinson,P.;Kariniotakis,G.Conditionalpredictionintervalsofwindpowergeneration. IEEETrans. PowerSyst.
2010,25, 1845â1856. [CrossRef]
20. Abdoos,A.;Hemmati,M.;Abdoos,A.A. Short term load forecastingusingahybrid intelligentmethod.
Knowl. BasedSyst. 2015,76, 139â147. [CrossRef]
21. Dong, J.-r.; Zheng, C.-y.; Kan, G.-y.; Zhao,M.; Wen, J.; Yu, J. Applying the ensemble artiïŹcial neural
network-basedhybriddata-drivenmodel todaily total load forecasting. NeuralComput. Appl. 2015, 26,
603â611. [CrossRef]
22. Lee,W.-J.;Hong, J.Ahybriddynamicandfuzzy timeseriesmodel formid-termpower loadforecasting.
Int. J.Electr. Power. EnergySyst. 2015,64, 1057â1062. [CrossRef]
23. Zhang,T.;Wang, J.K-nearestneighborsandakerneldensityestimator forGEFCom2014probabilisticwind
power forecasting. Int. J.Forecast. 2016,32, 1074â1080. [CrossRef]
24. Jurado, S.; Nebot, Ă.; Mugica, F.; Avellana, N. Hybridmethodologies for electricity load forecasting:
Entropy-based feature selectionwithmachine learningandsoft computing techniques. Energy2015, 86,
276â291. [CrossRef]
25. Feng,C.; Cui,M.; Hodge, B.-M.; Zhang, J. Adata-drivenmulti-modelmethodologywithdeep feature
selectionforshort-termwindforecasting.Appl. Energy2017,190, 1245â1257. [CrossRef]
26. Tso,G.K.;Yau,K.K.Predictingelectricityenergyconsumption:Acomparisonofregressionanalysis,decision
treeandneuralnetworks.Energy2007,32, 1761â1768. [CrossRef]
27. Jain,R.K.;Smith,K.M.;Culligan,P.J.;Taylor, J.E.Forecastingenergyconsumptionofmulti-familyresidential
buildingsusing supportvector regression: Investigating the impactof temporal andspatialmonitoring
granularityonperformanceaccuracy.Appl. Energy2014,123, 168â178. [CrossRef]
28. Grolinger,K.;LâHeureux,A.;Capretz,M.A.;Seewald,L.Energyforecastingforeventvenues: Bigdataand
predictionaccuracy.EnergyBuild. 2016,112, 222â233. [CrossRef]
29. Amber,K.;Aslam,M.;Hussain,S.Electricityconsumptionforecastingmodels foradministrationbuildings
of theUKhighereducationsector.EnergyBuild. 2015,90, 127â136. [CrossRef]
30. Rodrigues,F.;Cardeira,C.;Calado, J.M.F.Thedailyandhourlyenergyconsumptionandloadforecasting
usingartiïŹcialneuralnetworkmethod:Acasestudyusingasetof93households inPortugal.Energy2014,
62, 220â229. [CrossRef]
31. Efendi, R.; Ismail, Z.; Deris,M.M.Anew linguistic out-sample approach of fuzzy time series for daily
forecastingofMalaysianelectricity loaddemand.Appl. SoftComput. 2015,28, 422â430. [CrossRef]
32. ISO Week Date. Available online: https://en.wikipedia.org/wiki/ISO_week_date (accessed on 19
October2018).
33. Holidays andObservances in SouthKorea in 2017. Available online: https://www.timeanddate.com/
holidays/south-korea/(accessedon28April2018).
34. Climate of Seoul. Available online: https://en.wikipedia.org/wiki/Climate_of_Seoul (accessed on 28
April2018).
35. Son,S.-Y.;Lee,S.-H.;Chung,K.;Lim,J.S.Featureselectionfordailypeakloadforecastingusinganeuro-fuzzy
system.Multimed. ToolsAppl. 2015,74, 2321â2336. [CrossRef]
36. Kong,W.;Dong,Z.Y.; Jia,Y.;Hill,D.J.;Xu,Y.;Zhang,Y.Short-termresidential load forecastingbasedon
LSTMrecurrentneuralnetwork. IEEETrans. SmartGrid2017. [CrossRef]
137
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik