Seite - 144 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 144 -
Text der Seite - 144 -
Energies2018,11, 2080
The lackofavailabilityofall temperatureseriesaffects theaccuracyof thesystem.Bothmodels
have been tested by including only one series of data and then adding the rest one at a time.
This experimentallows todeterminewhichmodel canperformbestunder scarce informationand
whichcanbenefit themost fromaricherdataset.
2.2.3. TemperatureTreatment
As itwasaforementioned, temperaturehasanon-linear relationwithelectricityconsumption,
asbothhighandlowtemperaturecausesanincrease indemand.Toillustrate this,Figure3showsa
plotof theaverage loadonregulardaysat18hagainst theaverage temperatureof theday. Therefore,
inorder for the forecastingengine tocapturesuchbehavior, itmayrequireapre-processingof thedata.
Figure3.Scatterplotofnational loadat18hagainst thedailyaverage temperature inMadrid.
One commonapproach to this is using a technique calledHeatingDegreeDays (HDD) and
CoolingDegreeDays (CDD). This technique linearizes the temperature load relation bydefining
thresholdforhighandlowtemperaturesandsplitting theseries intoonethataccounts forcolddays
andanother thatdoes forhotdays. TheCDDandHDDseriesaredescribedinEquations (3)and(4)
andtheyare furtherdiscussed in [34].
CDDd= {
Tmed,d−THhot, if Tmed>THhot
0, otherwise (3)
HDDd= {
THcold−Tmed,d, if Tmed<THcold
0, otherwise (4)
whereTmed,d is theaverage temperatureofdayd,THhot andTHcold are the thresholds forhotandcold
daysandCDDdandHDDd are thevaluesofeachseries fordayd.
This techniquerequires the thresholds tobeproperly tunedtoeach location’seffectonthe load.
This optimization process is described in [39] and the optimal threshold for each zone has been
calculated.However, therobustnessofeachmodelagainst thevariationof thesevalueshasbeentested
byintroducingvariationsofupto12degreesoneachthreshold.
2.2.4.NeuralNetworkSize,RedundancyandComputationalBurden
Accordingto theselectedtopologyshowninFigure1,partof theconfigurationof thenetwork is
theselectionof thenumberofneurons in thehidden layer. Thecomplexityof thenetwork is related to
144
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik