Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 144 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 144 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 144 -

Bild der Seite - 144 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 144 -

Energies2018,11, 2080 The lackofavailabilityofall temperatureseriesaffects theaccuracyof thesystem.Bothmodels have been tested by including only one series of data and then adding the rest one at a time. This experimentallows todeterminewhichmodel canperformbestunder scarce informationand whichcanbenefit themost fromaricherdataset. 2.2.3. TemperatureTreatment As itwasaforementioned, temperaturehasanon-linear relationwithelectricityconsumption, asbothhighandlowtemperaturecausesanincrease indemand.Toillustrate this,Figure3showsa plotof theaverage loadonregulardaysat18hagainst theaverage temperatureof theday. Therefore, inorder for the forecastingengine tocapturesuchbehavior, itmayrequireapre-processingof thedata. Figure3.Scatterplotofnational loadat18hagainst thedailyaverage temperature inMadrid. One commonapproach to this is using a technique calledHeatingDegreeDays (HDD) and CoolingDegreeDays (CDD). This technique linearizes the temperature load relation bydefining thresholdforhighandlowtemperaturesandsplitting theseries intoonethataccounts forcolddays andanother thatdoes forhotdays. TheCDDandHDDseriesaredescribedinEquations (3)and(4) andtheyare furtherdiscussed in [34]. CDDd= { Tmed,d−THhot, if Tmed>THhot 0, otherwise (3) HDDd= { THcold−Tmed,d, if Tmed<THcold 0, otherwise (4) whereTmed,d is theaverage temperatureofdayd,THhot andTHcold are the thresholds forhotandcold daysandCDDdandHDDd are thevaluesofeachseries fordayd. This techniquerequires the thresholds tobeproperly tunedtoeach location’seffectonthe load. This optimization process is described in [39] and the optimal threshold for each zone has been calculated.However, therobustnessofeachmodelagainst thevariationof thesevalueshasbeentested byintroducingvariationsofupto12degreesoneachthreshold. 2.2.4.NeuralNetworkSize,RedundancyandComputationalBurden Accordingto theselectedtopologyshowninFigure1,partof theconfigurationof thenetwork is theselectionof thenumberofneurons in thehidden layer. Thecomplexityof thenetwork is related to 144
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies