Seite - 145 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 145 -
Text der Seite - 145 -
Energies2018,11, 2080
thisparameter,as it isassociatedto itsability tomodelnon-linearbehaviors.Anetworkwitha low
numberofneurons in itshidden layerwouldfail to learncomplex,non-linear relationsbetween input
andoutput. On theotherhand, thenumberofneurons increases the computationalburdenof the
trainingandforecastingprocessand, therefore it shouldbeminimized if thesystemisworkingonline
andhasaresponse timelimit.
Inaddition, theneuralnetworktrainingalgorithmreliesonarandominitializationof theneurons’
weights. Therandomnesscauses thenetwork’soutput tocontainarandomcomponent. Inorder to
minimizetheeffectof thisrandomness, theworkingmodel includesaredundantdesign. Eachnetwork
is replicatedn times toobtainndifferentoutputs foreachforecast. Thefinaloutput isobtainedthenby
discardingthe lowestandhighestvaluesandaveragingtherest. Increasing thenumberof replicas
costsa linear increaseof computationalburdenwhile it reduces therandomnessof theoutputand
reduces thevariabilityof theoutput,minimizingthemaximumerrorofa forecastedperiod.
The response timeof the system is a critical feature. If the forecast is not producedon time,
thenthewholeeffortcouldbeuseless. Inorder totesthowthelimitof timeresponseaffects themodels
thenumberofneurons is set from3to20andthenumberof redundantnetworks from3to25.As the
neural networkmodel is the onewithhigher computational burden it is the only one affectedby
this limitation.
2.2.5. FrequencyofTraining
As itwill be furtherdiscussed inSection3, the loadseries evolveover timedue tochanges in
factors like economic growth or shifts in consumer behaviors. This causes forecastingmodels to
becomeobsolete if thedatausedduring trainingno longer follows the current trends. Therefore,
inorder tokeepupwith loadshiftingbehavior, forecastingmodelsneedtobe frequentlyretrained
withnewdata.
The trainingprocessmayhaveheavycomputational requirements thatmake itunpractical to
increase frequencyneedlessly. Therefore, theperiod inbetweentrainings isa factor thatmayalter the
accuracyof themodel.
In this research, bothARandNNmodels have been testedwith training frequencies of 3, 6,
12and24months. Ineachof these tests, all sub-modelswere retrainedusing themost recentdata.
Inaccordancewith this, for frequencieshigher than12months, thesimulationperiodofoneyearwas
split intoseparateblocksas theTable1shows.
Toevaluate theresults, allblocks fromeachfrequencyareaddedtogether intoasingleone-year
period and the corresponding Root Mean Square Error (RMSE) is calculated for both AR and
NNmodels.
Table1.Trainingandsimulationperiodsusedfor testing theeffectof trainingfrequency.
Frequency(Months) Block TrainingPeriod SimulationPeriod
Start End Start End
3 1 1 January2010 31December2016 1 January2017 31March2017
2 1April2010 31March2017 1April2017 30 June2017
3 1 July2010 30 June2017 1July2017 30September2017
4 1October2010 30September2017 1October2017 31December2017
6 1 1 January2010 31December2016 1 January2017 30 June2017
2 1 July2010 30 June2017 1July2017 31December2017
12 1 1 January2010 31December2016 1 January2017 31December2017
24 1 1 January2009 31December2015 1 January2017 31December2017
145
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik