Seite - 150 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 150 -
Text der Seite - 150 -
Energies2018,11, 2080
4.2. TemperatureLocations
The results for testing the availability of temperature data series fromdifferent locations are
included inTable3. Inaddition,Figure9shows theevolutionof theoverallRMSEofbothmodels
fromhavingonly location to including all five. Locations are included sequentially frommost to
least relevant.
Table3.Forecastingerror (RMSE)withavailable temperature locationfrom1to5.
TypeofDay MAD MAD,BAR MAD,BAR,VIZ MAD,BAR,VIZ,SEV MAD,BAR,VIZ,SEV,ZAR
AR NN AR NN AR NN AR NN AR NN
Overall 1.63% 1.61% 1.53% 1.59% 1.48% 1.54% 1.46% 1.54% 1.45% 1.55%
Regular 1.59% 1.53% 1.48% 1.50% 1.43% 1.45% 1.41% 1.44% 1.40% 1.44%
Special 1.84% 2.22% 1.86% 2.21% 1.81% 2.15% 1.80% 2.17% 1.81% 2.31%
Hot 1.83% 2.02% 1.63% 1.91% 1.52% 1.84% 1.55% 1.94% 1.55% 1.93%
Cold 2.00% 1.61% 1.81% 1.49% 1.83% 1.47% 1.76% 1.48% 1.72% 1.48%
Testconditions: 7YearsTraining(7YT),10N,10RN,12MF,7/14LAG.
1.35%
1.40%
1.45%
1.50%
1.55%
1.60%
1.65%
1 2 3 4 5
Number of Avaliable Locations
Accuracy vs temperature availability
Figure9.Overall forecastingerror (RMSE)withavailable temperature locationfrom1to5.
TheNNoutperformstheARmodelwhenonlyonelocationisavailable. Bothmodelsbenefit from
havingmoredataseriesincluded,buttheARmodelobtainsamoreaccurateforecastwithfivelocations.
In fact, theNNmodelobtainsa largererrorwithfive locations thanitdoeswith four. Thiscould imply
that the linear restrictionontheARmodelallows it tocorrectly include this information in themodel.
Theexcessiveavailabilityof information,however, seemsto increase theriskofNNmodeloverfitting
the trainingdataand, therefore, losingforecastingcapabilities.
4.3. TemperatureTreatment
Thepreprocessingofthetemperaturedataisakeyaspectoftheforecastingsystem.Thethresholds
needtobeproperly tunedso that the linearizationof therelation iscorrect.However, these thresholds
mayshiftover timeasconsumers’behaviorregardingtemperaturechanges. Therefore, robustness to
thisconfiguration isalso important.
Theresultswereobtainedusingone locationeachtimeandvaryingHDDandCDDthresholds
from13to25 ◦C.Table4showstheoverall results forshifting theHDDthresholdforBarcelonaalong
with thehotandcoldcategoriesas thespecialdaysarenot relevant to this test.
Theeffect of adjusting the threshold ismore clearly shown inFigure10, inwhich forecasting
accuracyofbothmodelsusingtemperature fromZaragozaandBarcelona isplotted. Thegraphshows
150
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik