Seite - 46 - in Maximum Tire-Road Friction Coefficient Estimation
Bild der Seite - 46 -
Text der Seite - 46 -
3 Vehicle model
Longitudinal velocity v
x in m/s Friction
potential µmax
0 1 2
4681012
141618
0
0.5
1
0 1 2
4681012
141618
0
5
10
a)
b) Longitudinal velocity v
x in m/s
Friction
potential µmax
Figure 3.3.: Mean relative deviations as a function of the vehicle’s speed vx and the
friction potentialµmax for an ARB model variation in a double lane change
(DLC) manoeuvre for a) ∆ay of the lateral accelerationay and b) ∆Fy,rl of
the lateral tire forceFy,rl
model. Whereas the effort to include varying tire load, steering ratio and the anti-roll
bars is relatively low, the implementation of the tire dynamics require the inclusion of
four additional differential equations for the lateral tire forces, see Section 3.3.
3.1.5. Results for longitudinal manoeuvres
Tables 3.3 and 3.4 show the maximum mean relative deviations for the acceleration
and braking manoeuvres, respectively. For both manoeuvres, the model setups with the
highest influencearepresented indecreasingorder fromleft to right. As the investigated
vehicle is front-wheel driven, the longitudinal tire forces at the rear axle do not exceed
the 5 % limit for the acceleration manoeuvre. For the acceleration manoeuvres, the
46
Maximum Tire-Road Friction Coefficient Estimation
- Titel
- Maximum Tire-Road Friction Coefficient Estimation
- Autor
- Cornelia Lex
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Graz
- Datum
- 2015
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 3.0
- ISBN
- 978-3-85125-423-5
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 189
- Kategorie
- Technik