Seite - 51 - in Maximum Tire-Road Friction Coefficient Estimation
Bild der Seite - 51 -
Text der Seite - 51 -
3 Vehicle model
zg
xg yg
Og
Ofr Ofl Orl y
b
x
b z
b
Ob
Figure 3.5.: Global coordinate system {Og,xg,yg,zg} (inertial), vehicle-fixed coordi-
nate system {Ob,xb,yb,zb} and wheel-fixed horizonted coordinate systems
{Oi,xi,yi,zi} for wheel index i = {fl,fr,rl,rr} (with wheel i = rr not
displayed) based on ISO 8855, [fSI11]; graphic representation modified from
Hirschberg, [HW12, p.160].
Figure 3.5 shows all coordinate systems used, which are based on ISO 8855, [fSI11].
The position of the vehicle with respect to the global coordinate systemOg is described
with the coordinates xg and yg, and the orientation of the vehicle’s longitudinal axis
with respect to the xg axis with the yaw angleψ. The relationship between gy˙ and bz
reads
gy˙=T
g
b(gy) · bz, (3.4)
with the rotation matrix
Tgb=
cosψ −sinψ 0 0 0 0 0
sinψ cosψ 0 0 0 0 0
0 0 1 0 0 0 0
. (3.5)
The resulting equation of motion reads
M · z˙+k=q (3.6)
and includes the mass matrix M, gyroscopic and centrifugal forces k and the vector
of applied forces q. The equation of motion applies in the moving coordinate systemOb
which is located in the vehicle’s centre of gravity, cf. ISO 8855, [fSI11]. The mass matrix
M in Equation 3.6, which includes the vehicle massmb and the moments of inertia of
51
Maximum Tire-Road Friction Coefficient Estimation
- Titel
- Maximum Tire-Road Friction Coefficient Estimation
- Autor
- Cornelia Lex
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Graz
- Datum
- 2015
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 3.0
- ISBN
- 978-3-85125-423-5
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 189
- Kategorie
- Technik