Seite - 54 - in Maximum Tire-Road Friction Coefficient Estimation
Bild der Seite - 54 -
Text der Seite - 54 -
3 Vehicle model
δ
fr
δ
fl
F
x,flF
y,fl
F
x,rl
F
y,rl
F
x,rr
F
y,rr β
r
F
y,fr F
x,fr
F
z,r F
z,f
G F
A
Figure 3.7.: Kineticquantitiesofthetwo-trackvehiclemodel includingthehorizontaltire
forcesFx,i andFy,i, the aerodynamic forceFA, the weight forceG=mb ·g
and the vertical forces Fz,j, based on Eichberger, [Eic11, p.148]; graphic
depiction modified from Hirschberg, [Hir13, p.43, 69].
The rotation matrix Tbi reads
Tbi=
cosδi −sinδi 0
sinδi cosδi 0
0 0 1
(3.12)
and contains the wheel’s steering angles δi, see Section 3.2.4. The linear momentum in
the longitudinal direction of the vehicle also involves the aerodynamic resistance force
FA, which reads
FA= 1
2 ·cD ·Ap ·ρa ·vx · |vx|. (3.13)
Theaerodynamic force showsaquadraticdependenceonthevehicle’s longitudinal speed
vx and considers the air drag coefficient cD, the projected frontal areaAp of the vehicle
andtheairdensityρawhich isa functionofair temperatureandairpressure. Additional
wind forcesFW,x andFW,y actingonthevehiclebodycanalsobeconsidered. Theweight
forceG, which is given byG=mb ·gwith the vehicle’s massmb and the gravitational
acceleration g, contributes to the linear momentum in the longitudinal direction and is
directly proportional to the sine of the road slope βr. The third row of q contains the
angular momentum of the vehicle body, which reads
Oe ∑
Mz= ∑
i
rx,i
ry,i
0
×
b Fx,i
bFy,i
0
(3.14)
54
Maximum Tire-Road Friction Coefficient Estimation
- Titel
- Maximum Tire-Road Friction Coefficient Estimation
- Autor
- Cornelia Lex
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Graz
- Datum
- 2015
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 3.0
- ISBN
- 978-3-85125-423-5
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 189
- Kategorie
- Technik