Seite - 4 - in 3D Printing of Metals
Bild der Seite - 4 -
Text der Seite - 4 -
Metals 2017,7, 2
implants [11–13]. Magnesium based materials have lower Young’s modulus (41–45 GPa) than
commonlyusedmetallicbiomaterialssuchas titanium(55–110GPa),316Lstainlesssteel (210GPa),
andcobalt chromiumalloys (240GPa)andshownoindicationsof localorsystemic toxicity [14–16].
In addition, they are also osteo-conductive, facilitate bone cell in-growth, andhave a role in cell
attachment [17]. Due to these advantages, new types ofmagnesium implantmaterials havebeen
developedwhicheffectivelyaid in themitigationof stress-shieldingeffects andhavepotential for
useasabioresorbablematerial fordegradablebonereplacement,eliminatingtheneedofsecondary
surgicalprocedures [10].Althoughmagnesiumhasmanyadvantages, suitable forhardtissue implant
andtissueengineeringscaffoldmaterial,usageofmagnesiumisstill limitedinclinicalapplicationsdue
to itspoor formability, rapiddegradation inahighchloridephysiologicalenvironmentandhydrogen
evolution[18]. Therefore, continuouseffortsarebeingmadebyresearchers todevelopnewtypesof
magnesiumalloysandcomposites tomeetspecificpropertyrequirementsandexplorenewprocessing
technologies to fabricatepatient-specific implantcomponents thatcanbeprovidedwithadditional
functions to furtherbroadenthehorizonofmagnesiumutilization inbio-medicalapplications.
Magnesiumbasedmaterialsareusually fabricatedbyconventionalmanufacturingmethodssuch
asdeformationprocessing,casting,andpowdermetallurgy(P/M)techniques.Usually lightweight
engineeringpartswithhighperformancecanbeobtainedfromdeformationprocessingofmagnesium
basedmaterials. However, due to the hexagonal closed packing (HCP) structure ofmagnesium,
magnesiumalloys exhibit poor coldworkability at roomtemperature. Deformationprocessingof
magnesiumthereforeneeds tobeperformedatelevatedformingtemperatures toactivatemoreslip
systemsandtoallowbetter formability,which leads topoorsurfacequalityandoxidationofparts
andlimitsefficiency[19].Asaresult, consumptionofwroughtmagnesiumproductsonlyrepresent
a small fraction,merelyabout1.5%of totalmagnesiumconsumption [20]. Presently, casting is the
mostconventionalanddominantsynthesis routeusedfor themanufactureofmagnesiumalloysand
composites.Although,casting techniquesensuregreatefficiencywithhigherprecision, it isdifficult to
fabricatenear-netshapestructuresofcomplexshapesandintricateinternalarchitectures.Moreover, it is
oftenthecasethatproductquality isdegradedbythethermodynamicallystablephasesthatareformed
duringsolidificationfromthemeltandstrongoxidising tendencyofmagnesium[21]. It isnotpossible
tocontrol themorphologyand/ordistributionof thesephasesduringcooling. Therefore, severalP/M
routes are being explored to target unique microstructures, novel alloy compositions, and high
performance inmagnesiumalloys [22]. Promisingresultswereobtainedbyreinforcingmagnesium
withnanocrystallineandamorphousalloypowders. Forexample,Mg-Zn-Yalloyshavingveryhigh
tensileyield strengths in the rangeof 480–610MPawithanelongationbetween5%and16%were
developedusingarapidlysolidifiedP/Mapproach[23].Also,advancedpowderbasedmanufacturing
processessuchasadditivemanufacturing (AM), coldspray,metal injectionmoulding,andfrictionstir
processingarebeingdevelopedto fabricatemagnesiumalloyshavingnon-equilibriumcompositions
andlimiteddefects [22]. These techniquescanbesuccessfullyemployedtodesign intricateandnear
net shapedstructures. Inarecentstudy,Tandonetal. [24] showedthatmagnesiumalloypowderscan
bepotentiallyusedtomanufactureandrepair lightweightcomponents foraerospaceapplicationsby
usingcoldsprayandlaserassisteddepositionprocesses.
Asmagnesiumisexpanding intoamorepromising lightweight regimeandmedical technology
applications, there is a great need for intelligent selection ofmanufacturingprocesses to provide
uniquefunctionalproperties, crashperformance,andcorrosionresistance.Customisedcomponents
andimplantswith improvedmechanicalandphysicalpropertiescanbemanufacturedbyadditive
manufacturing(AM)techniques.AMincludesawholehostof“bottomup”approaches,wherein the
processes involvecreatingthree-dimensionalobjects fabricateddirectly fromcomputeraideddesign
(CAD)modelsbygraduallybuildingthemup, layer-by-layerwithinapowderbed.AmongtheAM
methods, laser-basedAMhasanimmensepotential forproducingfullydensemetallicstructuresusing
avarietyofavailablemetalpowdersandhasattractedmoreandmoreattention[25]. Selective laser
melting(SLM)isonesuchprocess thatuseshighintensity laserasanenergysource todirectly fuse
4
zurück zum
Buch 3D Printing of Metals"