Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 4 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 4 - in 3D Printing of Metals

Bild der Seite - 4 -

Bild der Seite - 4 - in 3D Printing of Metals

Text der Seite - 4 -

Metals 2017,7, 2 implants [11–13]. Magnesium based materials have lower Young’s modulus (41–45 GPa) than commonlyusedmetallicbiomaterialssuchas titanium(55–110GPa),316Lstainlesssteel (210GPa), andcobalt chromiumalloys (240GPa)andshownoindicationsof localorsystemic toxicity [14–16]. In addition, they are also osteo-conductive, facilitate bone cell in-growth, andhave a role in cell attachment [17]. Due to these advantages, new types ofmagnesium implantmaterials havebeen developedwhicheffectivelyaid in themitigationof stress-shieldingeffects andhavepotential for useasabioresorbablematerial fordegradablebonereplacement,eliminatingtheneedofsecondary surgicalprocedures [10].Althoughmagnesiumhasmanyadvantages, suitable forhardtissue implant andtissueengineeringscaffoldmaterial,usageofmagnesiumisstill limitedinclinicalapplicationsdue to itspoor formability, rapiddegradation inahighchloridephysiologicalenvironmentandhydrogen evolution[18]. Therefore, continuouseffortsarebeingmadebyresearchers todevelopnewtypesof magnesiumalloysandcomposites tomeetspecificpropertyrequirementsandexplorenewprocessing technologies to fabricatepatient-specific implantcomponents thatcanbeprovidedwithadditional functions to furtherbroadenthehorizonofmagnesiumutilization inbio-medicalapplications. Magnesiumbasedmaterialsareusually fabricatedbyconventionalmanufacturingmethodssuch asdeformationprocessing,casting,andpowdermetallurgy(P/M)techniques.Usually lightweight engineeringpartswithhighperformancecanbeobtainedfromdeformationprocessingofmagnesium basedmaterials. However, due to the hexagonal closed packing (HCP) structure ofmagnesium, magnesiumalloys exhibit poor coldworkability at roomtemperature. Deformationprocessingof magnesiumthereforeneeds tobeperformedatelevatedformingtemperatures toactivatemoreslip systemsandtoallowbetter formability,which leads topoorsurfacequalityandoxidationofparts andlimitsefficiency[19].Asaresult, consumptionofwroughtmagnesiumproductsonlyrepresent a small fraction,merelyabout1.5%of totalmagnesiumconsumption [20]. Presently, casting is the mostconventionalanddominantsynthesis routeusedfor themanufactureofmagnesiumalloysand composites.Although,casting techniquesensuregreatefficiencywithhigherprecision, it isdifficult to fabricatenear-netshapestructuresofcomplexshapesandintricateinternalarchitectures.Moreover, it is oftenthecasethatproductquality isdegradedbythethermodynamicallystablephasesthatareformed duringsolidificationfromthemeltandstrongoxidising tendencyofmagnesium[21]. It isnotpossible tocontrol themorphologyand/ordistributionof thesephasesduringcooling. Therefore, severalP/M routes are being explored to target unique microstructures, novel alloy compositions, and high performance inmagnesiumalloys [22]. Promisingresultswereobtainedbyreinforcingmagnesium withnanocrystallineandamorphousalloypowders. Forexample,Mg-Zn-Yalloyshavingveryhigh tensileyield strengths in the rangeof 480–610MPawithanelongationbetween5%and16%were developedusingarapidlysolidifiedP/Mapproach[23].Also,advancedpowderbasedmanufacturing processessuchasadditivemanufacturing (AM), coldspray,metal injectionmoulding,andfrictionstir processingarebeingdevelopedto fabricatemagnesiumalloyshavingnon-equilibriumcompositions andlimiteddefects [22]. These techniquescanbesuccessfullyemployedtodesign intricateandnear net shapedstructures. Inarecentstudy,Tandonetal. [24] showedthatmagnesiumalloypowderscan bepotentiallyusedtomanufactureandrepair lightweightcomponents foraerospaceapplicationsby usingcoldsprayandlaserassisteddepositionprocesses. Asmagnesiumisexpanding intoamorepromising lightweight regimeandmedical technology applications, there is a great need for intelligent selection ofmanufacturingprocesses to provide uniquefunctionalproperties, crashperformance,andcorrosionresistance.Customisedcomponents andimplantswith improvedmechanicalandphysicalpropertiescanbemanufacturedbyadditive manufacturing(AM)techniques.AMincludesawholehostof“bottomup”approaches,wherein the processes involvecreatingthree-dimensionalobjects fabricateddirectly fromcomputeraideddesign (CAD)modelsbygraduallybuildingthemup, layer-by-layerwithinapowderbed.AmongtheAM methods, laser-basedAMhasanimmensepotential forproducingfullydensemetallicstructuresusing avarietyofavailablemetalpowdersandhasattractedmoreandmoreattention[25]. Selective laser melting(SLM)isonesuchprocess thatuseshighintensity laserasanenergysource todirectly fuse 4
zurück zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals