Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 4 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 4 - in 3D Printing of Metals

Image of the Page - 4 -

Image of the Page - 4 - in 3D Printing of Metals

Text of the Page - 4 -

Metals 2017,7, 2 implants [11–13]. Magnesium based materials have lower Young’s modulus (41–45 GPa) than commonlyusedmetallicbiomaterialssuchas titanium(55–110GPa),316Lstainlesssteel (210GPa), andcobalt chromiumalloys (240GPa)andshownoindicationsof localorsystemic toxicity [14–16]. In addition, they are also osteo-conductive, facilitate bone cell in-growth, andhave a role in cell attachment [17]. Due to these advantages, new types ofmagnesium implantmaterials havebeen developedwhicheffectivelyaid in themitigationof stress-shieldingeffects andhavepotential for useasabioresorbablematerial fordegradablebonereplacement,eliminatingtheneedofsecondary surgicalprocedures [10].Althoughmagnesiumhasmanyadvantages, suitable forhardtissue implant andtissueengineeringscaffoldmaterial,usageofmagnesiumisstill limitedinclinicalapplicationsdue to itspoor formability, rapiddegradation inahighchloridephysiologicalenvironmentandhydrogen evolution[18]. Therefore, continuouseffortsarebeingmadebyresearchers todevelopnewtypesof magnesiumalloysandcomposites tomeetspecificpropertyrequirementsandexplorenewprocessing technologies to fabricatepatient-specific implantcomponents thatcanbeprovidedwithadditional functions to furtherbroadenthehorizonofmagnesiumutilization inbio-medicalapplications. Magnesiumbasedmaterialsareusually fabricatedbyconventionalmanufacturingmethodssuch asdeformationprocessing,casting,andpowdermetallurgy(P/M)techniques.Usually lightweight engineeringpartswithhighperformancecanbeobtainedfromdeformationprocessingofmagnesium basedmaterials. However, due to the hexagonal closed packing (HCP) structure ofmagnesium, magnesiumalloys exhibit poor coldworkability at roomtemperature. Deformationprocessingof magnesiumthereforeneeds tobeperformedatelevatedformingtemperatures toactivatemoreslip systemsandtoallowbetter formability,which leads topoorsurfacequalityandoxidationofparts andlimitsefficiency[19].Asaresult, consumptionofwroughtmagnesiumproductsonlyrepresent a small fraction,merelyabout1.5%of totalmagnesiumconsumption [20]. Presently, casting is the mostconventionalanddominantsynthesis routeusedfor themanufactureofmagnesiumalloysand composites.Although,casting techniquesensuregreatefficiencywithhigherprecision, it isdifficult to fabricatenear-netshapestructuresofcomplexshapesandintricateinternalarchitectures.Moreover, it is oftenthecasethatproductquality isdegradedbythethermodynamicallystablephasesthatareformed duringsolidificationfromthemeltandstrongoxidising tendencyofmagnesium[21]. It isnotpossible tocontrol themorphologyand/ordistributionof thesephasesduringcooling. Therefore, severalP/M routes are being explored to target unique microstructures, novel alloy compositions, and high performance inmagnesiumalloys [22]. Promisingresultswereobtainedbyreinforcingmagnesium withnanocrystallineandamorphousalloypowders. Forexample,Mg-Zn-Yalloyshavingveryhigh tensileyield strengths in the rangeof 480–610MPawithanelongationbetween5%and16%were developedusingarapidlysolidifiedP/Mapproach[23].Also,advancedpowderbasedmanufacturing processessuchasadditivemanufacturing (AM), coldspray,metal injectionmoulding,andfrictionstir processingarebeingdevelopedto fabricatemagnesiumalloyshavingnon-equilibriumcompositions andlimiteddefects [22]. These techniquescanbesuccessfullyemployedtodesign intricateandnear net shapedstructures. Inarecentstudy,Tandonetal. [24] showedthatmagnesiumalloypowderscan bepotentiallyusedtomanufactureandrepair lightweightcomponents foraerospaceapplicationsby usingcoldsprayandlaserassisteddepositionprocesses. Asmagnesiumisexpanding intoamorepromising lightweight regimeandmedical technology applications, there is a great need for intelligent selection ofmanufacturingprocesses to provide uniquefunctionalproperties, crashperformance,andcorrosionresistance.Customisedcomponents andimplantswith improvedmechanicalandphysicalpropertiescanbemanufacturedbyadditive manufacturing(AM)techniques.AMincludesawholehostof“bottomup”approaches,wherein the processes involvecreatingthree-dimensionalobjects fabricateddirectly fromcomputeraideddesign (CAD)modelsbygraduallybuildingthemup, layer-by-layerwithinapowderbed.AmongtheAM methods, laser-basedAMhasanimmensepotential forproducingfullydensemetallicstructuresusing avarietyofavailablemetalpowdersandhasattractedmoreandmoreattention[25]. Selective laser melting(SLM)isonesuchprocess thatuseshighintensity laserasanenergysource todirectly fuse 4
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals