Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 21 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 21 - in 3D Printing of Metals

Bild der Seite - 21 -

Bild der Seite - 21 - in 3D Printing of Metals

Text der Seite - 21 -

Metals 2017,7, 2 Figure10.Microstructureof (a–c)AZ91.[61]and(d)ZK60[62]alloysafterselective lasermelting: in(a), half-moonshapedmeltpoolsareclearlyvisible, (b)vertical section indicatingmultipleremeltingof each layer,while (d) showscolumnarα-Mggrainsdominating themarginzoneof themoltenpooland equiaxedα-Mggrains in thecentrezoneof themoltenpool. Microstructural featuresofSLMprocessedmagnesiumalloyscanbesignificantly influencedby theprocessingparametersused. Thecombinationofhigherscanningspeedsandlower laserpower results ina lower incidentenergyat the topof thepart, typically resulting infinermicrostructuresdue tohighercoolingrates. Incontrast, lowercoolingratesandcoarsermicrostructurescanbeobtainedby decreasingscanningspeedandincreasing laserpower.Atrelatively lowerscanningspeeds,prolonged interactionof the laserbeamwithpowders results in therestrainingofheatdissipation in themelt pool.Asaresult, relativelyequivalentcoolingratesduringsolidificationcanbeachieveddueto larger heat accumulation and thusproviding enhancedkinetic qualifications for epitaxial growthof the grains [49].With the increaseof laserenergydensity, thecrystallinestructureofmagnesiumalloys experiencesuccessivechanges in theorderofclusteredfinerdendrites,uniformequi-axedgrains to coarsenedequi-axedgrains.AscanbeseenfromthemicrostructureofSLMprocessedZK60alloys, extremelyfinedendrites (~2μm)which clustered severely together,were observedat a relatively lower laserenergy inputof420 J/mm3 (Figure11a). Thedendritescoarsenedtosomeextent (~4μm) and changed to a column shaped structurewith an increase in laser energy input to 500 J/mm3 (Figure11b),butstill exhibitedadisordereddistribution. Further increase in the laserenergy input to600J/mm3and750J/mm3 resulted inorderlydispersed,equi-axedgrainsof~6μm(Figure11c) and~8μm(Figure 11d), respectively. Thedendritic crystalline structurewas formed through the heterogenousnucleationofα-Mgandsubsequentdendritegrowth,whereas, theequi-axedcrystalline structurewas formedthroughthehomogenousnucleationofα-Mgandsubsequentequi-axedgrowth ofgrains [49]. Similar resultswereobservedinthe investigationofSLMofMg-9%Alalloypowders byZhanget al. [60]wherein significant grain refinement in the laser-melted regionwasobserved withgrainsizes in therangeof10–20μm.Themicrostructure theMg-Alalloyconsistedofequi-axed grains, transformedfromdendriticgrainsunderahightemperaturegradient.AnXRDanalysisof the laser-meltedsamples indicatedthepresenceofphases likeα-Mg,Mg17Al12,MgO,Al2O3. TheAl2O3 phasewas formedasa resultof incomplete reactionbetweenMgandAl, onlyundera lowenergy density inputof93.75 J/mm3. Further, itwasalsoobservedthat thecontentofMgdecreasedinthe laser-meltedregionbecauseofselectiveevaporationwith the increase in laserenergydensity. 21
zurück zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals