Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 21 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 21 - in 3D Printing of Metals

Image of the Page - 21 -

Image of the Page - 21 - in 3D Printing of Metals

Text of the Page - 21 -

Metals 2017,7, 2 Figure10.Microstructureof (a–c)AZ91.[61]and(d)ZK60[62]alloysafterselective lasermelting: in(a), half-moonshapedmeltpoolsareclearlyvisible, (b)vertical section indicatingmultipleremeltingof each layer,while (d) showscolumnarα-Mggrainsdominating themarginzoneof themoltenpooland equiaxedα-Mggrains in thecentrezoneof themoltenpool. Microstructural featuresofSLMprocessedmagnesiumalloyscanbesignificantly influencedby theprocessingparametersused. Thecombinationofhigherscanningspeedsandlower laserpower results ina lower incidentenergyat the topof thepart, typically resulting infinermicrostructuresdue tohighercoolingrates. Incontrast, lowercoolingratesandcoarsermicrostructurescanbeobtainedby decreasingscanningspeedandincreasing laserpower.Atrelatively lowerscanningspeeds,prolonged interactionof the laserbeamwithpowders results in therestrainingofheatdissipation in themelt pool.Asaresult, relativelyequivalentcoolingratesduringsolidificationcanbeachieveddueto larger heat accumulation and thusproviding enhancedkinetic qualifications for epitaxial growthof the grains [49].With the increaseof laserenergydensity, thecrystallinestructureofmagnesiumalloys experiencesuccessivechanges in theorderofclusteredfinerdendrites,uniformequi-axedgrains to coarsenedequi-axedgrains.AscanbeseenfromthemicrostructureofSLMprocessedZK60alloys, extremelyfinedendrites (~2μm)which clustered severely together,were observedat a relatively lower laserenergy inputof420 J/mm3 (Figure11a). Thedendritescoarsenedtosomeextent (~4μm) and changed to a column shaped structurewith an increase in laser energy input to 500 J/mm3 (Figure11b),butstill exhibitedadisordereddistribution. Further increase in the laserenergy input to600J/mm3and750J/mm3 resulted inorderlydispersed,equi-axedgrainsof~6μm(Figure11c) and~8μm(Figure 11d), respectively. Thedendritic crystalline structurewas formed through the heterogenousnucleationofα-Mgandsubsequentdendritegrowth,whereas, theequi-axedcrystalline structurewas formedthroughthehomogenousnucleationofα-Mgandsubsequentequi-axedgrowth ofgrains [49]. Similar resultswereobservedinthe investigationofSLMofMg-9%Alalloypowders byZhanget al. [60]wherein significant grain refinement in the laser-melted regionwasobserved withgrainsizes in therangeof10–20μm.Themicrostructure theMg-Alalloyconsistedofequi-axed grains, transformedfromdendriticgrainsunderahightemperaturegradient.AnXRDanalysisof the laser-meltedsamples indicatedthepresenceofphases likeα-Mg,Mg17Al12,MgO,Al2O3. TheAl2O3 phasewas formedasa resultof incomplete reactionbetweenMgandAl, onlyundera lowenergy density inputof93.75 J/mm3. Further, itwasalsoobservedthat thecontentofMgdecreasedinthe laser-meltedregionbecauseofselectiveevaporationwith the increase in laserenergydensity. 21
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals