Seite - 22 - in 3D Printing of Metals
Bild der Seite - 22 -
Text der Seite - 22 -
Metals 2017,7, 2
Figure11.Optical imagesshowingcharacteristic crystallinestructuresof lasermeltedZK60prepared
atdifferent laserenergydensities: (a) 420 J/mm3; (b) 500 J/mm3; (c) 600 J/mm3; (d) 750 J/mm3 [49].
Reportsalso indicate that the typeandmodeof the laserbeamusedcanaffect themicrostructures
formedinSLMprocessedmagnesiumas theresultantconsolidationmechanismofmetallicpowders
isa functionofenergydensitydelivered[39].Ngetal. [57] comparedmicrostructuresof the tracks
formed inSLMprocessingofmagnesiumpowders, processedunderboth continuous andpulsed
modeof irradiation.Undercontinuouswave irradiation, lasermelting ledto the formationof fully
recrystallizedgrains in themeltedzoneswithgrain sizes in the rangeof2.3–4.87μm(laser energy
densitiesvariedfrom1.27×109 J/m2 to7.84×109 J/m2). Theα-Mgsinglephasesolidifiedintheform
ofequi-axedcrystalsasseen inFigure12a.However, in thecaseof tracksmeltedunderpulsedmode
of irradiation, incompletegrowthof theα-Mgphasewasobserved(Figure12b). Fullgrowthofα-Mg
was inhibitedas the solidification rates achievedunderpulsedmodewashigher than continuous
irradiation. Besides,due to theshorter interaction timeincaseofpulsedmode, there is insufficient
time for the crystals to arrange themselves such that thermodynamic equilibriumprevails at the
solid/liquid interface. Theaverage sizeof grainsobtainedunderpulsedmodewere smaller than
thoseobtainedin thecontinuousmodelasermeltedtracks.Also, smaller laserspotsize (50–180μm)
and layer thickness (typically 20–50μm)used in the SLMprocesswhen compared to other laser
processingtechnologiessuchasdirect laserdeposition (DLD), laser rapidforming(LRF)andlasernet
shapemanufacturing(LNSM)ledto the formationofasmallermeltingpool, therebyresulting in the
formationofarefinedmicrostructure [29].Normally, layer thickness,alone,has little influenceonthe
microstructure,butits influenceisdependentonotherparameters,suchaslaserpower,scanningspeed,
specificenergydensity,andpowdermassflowrate. Forexample,as thespecific laserenergydensity is
lowered, thinner layer thicknesswillbe required,as theenergyperunitarea tomelt thepowder is
reduced.However, itwasobservedbySavalanietal. [58] thatdifferent layer thicknessesdirectlyaffect
theoxygencontent in thematrixmaterial thereby resulting inphase andmicrostructural changes.
OxidationoccurringduringSLMprocessingofmagnesiumatdifferent layer thicknesses rangedfrom
approximately9.1 to11.7at%.The levelofoxidationwasfoundtobe inverselyproportional to the
layer thickness,as itdecreasedfrom11.7%to9.1%withthe increase in layer thickness from150μm
to300μm.
22
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie