Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 22 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 22 - in 3D Printing of Metals

Bild der Seite - 22 -

Bild der Seite - 22 - in 3D Printing of Metals

Text der Seite - 22 -

Metals 2017,7, 2 Figure11.Optical imagesshowingcharacteristic crystallinestructuresof lasermeltedZK60prepared atdifferent laserenergydensities: (a) 420 J/mm3; (b) 500 J/mm3; (c) 600 J/mm3; (d) 750 J/mm3 [49]. Reportsalso indicate that the typeandmodeof the laserbeamusedcanaffect themicrostructures formedinSLMprocessedmagnesiumas theresultantconsolidationmechanismofmetallicpowders isa functionofenergydensitydelivered[39].Ngetal. [57] comparedmicrostructuresof the tracks formed inSLMprocessingofmagnesiumpowders, processedunderboth continuous andpulsed modeof irradiation.Undercontinuouswave irradiation, lasermelting ledto the formationof fully recrystallizedgrains in themeltedzoneswithgrain sizes in the rangeof2.3–4.87μm(laser energy densitiesvariedfrom1.27×109 J/m2 to7.84×109 J/m2). Theα-Mgsinglephasesolidifiedintheform ofequi-axedcrystalsasseen inFigure12a.However, in thecaseof tracksmeltedunderpulsedmode of irradiation, incompletegrowthof theα-Mgphasewasobserved(Figure12b). Fullgrowthofα-Mg was inhibitedas the solidification rates achievedunderpulsedmodewashigher than continuous irradiation. Besides,due to theshorter interaction timeincaseofpulsedmode, there is insufficient time for the crystals to arrange themselves such that thermodynamic equilibriumprevails at the solid/liquid interface. Theaverage sizeof grainsobtainedunderpulsedmodewere smaller than thoseobtainedin thecontinuousmodelasermeltedtracks.Also, smaller laserspotsize (50–180μm) and layer thickness (typically 20–50μm)used in the SLMprocesswhen compared to other laser processingtechnologiessuchasdirect laserdeposition (DLD), laser rapidforming(LRF)andlasernet shapemanufacturing(LNSM)ledto the formationofasmallermeltingpool, therebyresulting in the formationofarefinedmicrostructure [29].Normally, layer thickness,alone,has little influenceonthe microstructure,butits influenceisdependentonotherparameters,suchaslaserpower,scanningspeed, specificenergydensity,andpowdermassflowrate. Forexample,as thespecific laserenergydensity is lowered, thinner layer thicknesswillbe required,as theenergyperunitarea tomelt thepowder is reduced.However, itwasobservedbySavalanietal. [58] thatdifferent layer thicknessesdirectlyaffect theoxygencontent in thematrixmaterial thereby resulting inphase andmicrostructural changes. OxidationoccurringduringSLMprocessingofmagnesiumatdifferent layer thicknesses rangedfrom approximately9.1 to11.7at%.The levelofoxidationwasfoundtobe inverselyproportional to the layer thickness,as itdecreasedfrom11.7%to9.1%withthe increase in layer thickness from150μm to300μm. 22
zurück zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals