Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 22 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 22 - in 3D Printing of Metals

Image of the Page - 22 -

Image of the Page - 22 - in 3D Printing of Metals

Text of the Page - 22 -

Metals 2017,7, 2 Figure11.Optical imagesshowingcharacteristic crystallinestructuresof lasermeltedZK60prepared atdifferent laserenergydensities: (a) 420 J/mm3; (b) 500 J/mm3; (c) 600 J/mm3; (d) 750 J/mm3 [49]. Reportsalso indicate that the typeandmodeof the laserbeamusedcanaffect themicrostructures formedinSLMprocessedmagnesiumas theresultantconsolidationmechanismofmetallicpowders isa functionofenergydensitydelivered[39].Ngetal. [57] comparedmicrostructuresof the tracks formed inSLMprocessingofmagnesiumpowders, processedunderboth continuous andpulsed modeof irradiation.Undercontinuouswave irradiation, lasermelting ledto the formationof fully recrystallizedgrains in themeltedzoneswithgrain sizes in the rangeof2.3–4.87μm(laser energy densitiesvariedfrom1.27×109 J/m2 to7.84×109 J/m2). Theα-Mgsinglephasesolidifiedintheform ofequi-axedcrystalsasseen inFigure12a.However, in thecaseof tracksmeltedunderpulsedmode of irradiation, incompletegrowthof theα-Mgphasewasobserved(Figure12b). Fullgrowthofα-Mg was inhibitedas the solidification rates achievedunderpulsedmodewashigher than continuous irradiation. Besides,due to theshorter interaction timeincaseofpulsedmode, there is insufficient time for the crystals to arrange themselves such that thermodynamic equilibriumprevails at the solid/liquid interface. Theaverage sizeof grainsobtainedunderpulsedmodewere smaller than thoseobtainedin thecontinuousmodelasermeltedtracks.Also, smaller laserspotsize (50–180μm) and layer thickness (typically 20–50μm)used in the SLMprocesswhen compared to other laser processingtechnologiessuchasdirect laserdeposition (DLD), laser rapidforming(LRF)andlasernet shapemanufacturing(LNSM)ledto the formationofasmallermeltingpool, therebyresulting in the formationofarefinedmicrostructure [29].Normally, layer thickness,alone,has little influenceonthe microstructure,butits influenceisdependentonotherparameters,suchaslaserpower,scanningspeed, specificenergydensity,andpowdermassflowrate. Forexample,as thespecific laserenergydensity is lowered, thinner layer thicknesswillbe required,as theenergyperunitarea tomelt thepowder is reduced.However, itwasobservedbySavalanietal. [58] thatdifferent layer thicknessesdirectlyaffect theoxygencontent in thematrixmaterial thereby resulting inphase andmicrostructural changes. OxidationoccurringduringSLMprocessingofmagnesiumatdifferent layer thicknesses rangedfrom approximately9.1 to11.7at%.The levelofoxidationwasfoundtobe inverselyproportional to the layer thickness,as itdecreasedfrom11.7%to9.1%withthe increase in layer thickness from150μm to300μm. 22
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals