Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Seite - 89 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 89 - in 3D Printing of Metals

Bild der Seite - 89 -

Bild der Seite - 89 - in 3D Printing of Metals

Text der Seite - 89 -

Metals 2016,6, 280 proposed to seek amicro-structure ofmaximum stiffnesswith the constraint of volume fraction optimization. The inverse homogenization theory was also applied to estimating the effective mechanicalpropertiesof scaffoldmaterialswhicharearrayedbyperiodicalbasecells. However, thestructure topologicaloptimizationwill alwayschange theshapeof thecomponents. Theshapeofparts shouldnotchange,especiallywhenthepartsareassembledwithother traditional componentsorshouldmeet therequirementsofaerodynamics. Thispaperinvestigatesanewdesignmethodforlightweightpartsmanufacturedbyselectivelaser melting(SLM)basedonthe“Skin-Frame”andexplores the influenceofmachiningdefectsonSLM partswhichhavedifferent sizesbytheexperimentalmethod. Theproceduresof thenovel, lightweight redesignmethodwereresearched.Astopperandconnectingplatewereredesignedwith thismethod. TheseredesignedpartswerefabricatedbySLMandshowedgoodmechanicalcharacteristics. Theresults showthat the lightweightpartsdesignedbythismethodcansatisfy theuserequirements. 2. ExperimentalSection 2.1.Materials Thelatticestructuresandtensiletestsamplesweremadefromaniron-nickelalloy(IN718)powder with anaverageparticle size of 30± 10μm. The chemical compositionof thepowder consists of Ni (53.5%), Cr (19%), Fe (18.3%),Nb (5%),Mo (3%max), Ti (1%max),Al (0.43%max). The SEM micro-graphof the IN718powder isshowninFigure1. Ithasgoodmechanical characteristicsandis widelyusedinaerospace industry.All samples for thisstudyweremanufacturedbyEOSINTM280 systemwhichutilizeda200Wytterbiumfiber laser. Thismachinehasaneffectivebuildingvolume of250mm×250mm×325mm. Tensile candidateswere fabricated inaverticalbuildorientation, with thecylinderaxisparallel to thebeamdirection. Figure1.SEMmicro-graphof the IN718powder. The 100 μm diameter laser beam was scanned at 1200 mm/s in argon gas environments surrounding the buildingparts. The oxygen level in theprocess chamberwasmaintainedbelow 0.1%.Thebuildingplatformwaspreheatedto80 ◦Candmaintainedat that temperature. Thehatch spacingwas0.05mmandthe layer thicknesswas50μmwithaspotdiameterof0.1mm. 2.2. ProcessofTensileTest Tensilesamplesweredesignedaccordingto theChineseGB/T228-2010standard. Figure2shows thesizesofsamples for the tensileexperiment. Thediameterofparts is10mmwhile therestof the parametersdependonthe testmachine. ThesamplesweredesignedbyCADsoftware thenexported asasingleSTLfile format to theSLMmachine formanufacturing. 89
zurück zum  Buch 3D Printing of Metals"
3D Printing of Metals
Titel
3D Printing of Metals
Autor
Manoj Gupta
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Abmessungen
17.0 x 24.4 cm
Seiten
170
Schlagwörter
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals