Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 89 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 89 - in 3D Printing of Metals

Image of the Page - 89 -

Image of the Page - 89 - in 3D Printing of Metals

Text of the Page - 89 -

Metals 2016,6, 280 proposed to seek amicro-structure ofmaximum stiffnesswith the constraint of volume fraction optimization. The inverse homogenization theory was also applied to estimating the effective mechanicalpropertiesof scaffoldmaterialswhicharearrayedbyperiodicalbasecells. However, thestructure topologicaloptimizationwill alwayschange theshapeof thecomponents. Theshapeofparts shouldnotchange,especiallywhenthepartsareassembledwithother traditional componentsorshouldmeet therequirementsofaerodynamics. Thispaperinvestigatesanewdesignmethodforlightweightpartsmanufacturedbyselectivelaser melting(SLM)basedonthe“Skin-Frame”andexplores the influenceofmachiningdefectsonSLM partswhichhavedifferent sizesbytheexperimentalmethod. Theproceduresof thenovel, lightweight redesignmethodwereresearched.Astopperandconnectingplatewereredesignedwith thismethod. TheseredesignedpartswerefabricatedbySLMandshowedgoodmechanicalcharacteristics. Theresults showthat the lightweightpartsdesignedbythismethodcansatisfy theuserequirements. 2. ExperimentalSection 2.1.Materials Thelatticestructuresandtensiletestsamplesweremadefromaniron-nickelalloy(IN718)powder with anaverageparticle size of 30± 10μm. The chemical compositionof thepowder consists of Ni (53.5%), Cr (19%), Fe (18.3%),Nb (5%),Mo (3%max), Ti (1%max),Al (0.43%max). The SEM micro-graphof the IN718powder isshowninFigure1. Ithasgoodmechanical characteristicsandis widelyusedinaerospace industry.All samples for thisstudyweremanufacturedbyEOSINTM280 systemwhichutilizeda200Wytterbiumfiber laser. Thismachinehasaneffectivebuildingvolume of250mm×250mm×325mm. Tensile candidateswere fabricated inaverticalbuildorientation, with thecylinderaxisparallel to thebeamdirection. Figure1.SEMmicro-graphof the IN718powder. The 100 μm diameter laser beam was scanned at 1200 mm/s in argon gas environments surrounding the buildingparts. The oxygen level in theprocess chamberwasmaintainedbelow 0.1%.Thebuildingplatformwaspreheatedto80 ◦Candmaintainedat that temperature. Thehatch spacingwas0.05mmandthe layer thicknesswas50μmwithaspotdiameterof0.1mm. 2.2. ProcessofTensileTest Tensilesamplesweredesignedaccordingto theChineseGB/T228-2010standard. Figure2shows thesizesofsamples for the tensileexperiment. Thediameterofparts is10mmwhile therestof the parametersdependonthe testmachine. ThesamplesweredesignedbyCADsoftware thenexported asasingleSTLfile format to theSLMmachine formanufacturing. 89
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals