Seite - 121 - in 3D Printing of Metals
Bild der Seite - 121 -
Text der Seite - 121 -
Metals 2017,7, 64
Figure1. “Island”scanningstrategy, shapedlikecheckerboardsemployedin theSLMprocessof316L
SSsamples.
Vickersmicrohardness (HV)measurementswere takenalong thecross-sectionsusingFM-300
MicrohardnessTester (Future-TechCorp,Kanagawa, Japan). Thedistancebetweeneach indentation
was1mmandtheapplied loadwas100gfwithdwell timeof10s. Themeasurementsateachposition
wererepeatedthreetimesandtheaverageHVvalueswerecalculated. Inaddition,HVvalueswerealso
obtainedfromthecube-shaped316LSSsamplemanufacturedbyWMusingsimilar testingconditions.
Theaverageporosity in theSLM-built sampleswascalculatedusing thewell-knownArchimedes
method. On the other hand, the pore size distributionwasdeterminedusing opticalmicroscopy
(GenICam software, Basler AG, Ahrensburg, Germany) from 15 micrographs for each sample.
Inaddition,oneAMsample (approximately10mm×10mm×15mm)wassubjectedtoadvanced
X-ray computed tomography (XCT) scan to obtain information onporosity as this sample had a
relativelycomplexgeometrycomparedto theothersamples. This samplewasfirst scannedunder low
resolutionusingNikonBenchtopCT160Xi (NikonMetrology,Herts,UK) toobtain thegeneralporosity
distribution. Then,asmall regionwith thehighestporositycontentwaschosentoundergodetailed
scanningusing160kVZeissXRadia510Versa (CarlZeissMicroscopyGmbH,Jena,Germany)with
highresolutionof3.2μmfor20h.After reconstructionandhandlingofrawimages fromtheXCTscan
results,VGStudioMaxsoftware (VolumeGraphicsGmbH,Heidelberg,Germany)wasusedasa3D
visualisationtool toobtaindetailedporositydistribution in thesmall regionof interest. Theporosity
inXCT-scannedsampleswasdefinedusingtheOtsumethoddescribed inRef. [24].
3.ResultsandDiscussion
3.1.Microstructure
Figure2a shows the cross-sectionalviewson thex–y (scandirection)plane,whileFigure2b,c
showsthecross-sectionalviewsonthex–zandy–zplanes (builddirection), respectively. Thesemelted
scantracksarerepresentativeof thesolidifiedmeltpool foreach layeronthepowderbed. Thecurved
“fish-scale”—like geometries observed in the x–z and y–z (build direction) planes are due to the
semi-circularshapeof themeltpoolandthepartial re-meltingofsuccessivelydeposited layerswhich
havebeensolidified[23]. Theseoverlappinggeometriesalsodemonstratesuccessful fusionofpowder
particlesandbondingwithineach layer, similar to theworkcarriedoutbyCherryetal. [1]andYasa
andKruth[20].
121
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie