Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 121 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 121 - in 3D Printing of Metals

Image of the Page - 121 -

Image of the Page - 121 - in 3D Printing of Metals

Text of the Page - 121 -

Metals 2017,7, 64 Figure1. “Island”scanningstrategy, shapedlikecheckerboardsemployedin theSLMprocessof316L SSsamples. Vickersmicrohardness (HV)measurementswere takenalong thecross-sectionsusingFM-300 MicrohardnessTester (Future-TechCorp,Kanagawa, Japan). Thedistancebetweeneach indentation was1mmandtheapplied loadwas100gfwithdwell timeof10s. Themeasurementsateachposition wererepeatedthreetimesandtheaverageHVvalueswerecalculated. Inaddition,HVvalueswerealso obtainedfromthecube-shaped316LSSsamplemanufacturedbyWMusingsimilar testingconditions. Theaverageporosity in theSLM-built sampleswascalculatedusing thewell-knownArchimedes method. On the other hand, the pore size distributionwasdeterminedusing opticalmicroscopy (GenICam software, Basler AG, Ahrensburg, Germany) from 15 micrographs for each sample. Inaddition,oneAMsample (approximately10mm×10mm×15mm)wassubjectedtoadvanced X-ray computed tomography (XCT) scan to obtain information onporosity as this sample had a relativelycomplexgeometrycomparedto theothersamples. This samplewasfirst scannedunder low resolutionusingNikonBenchtopCT160Xi (NikonMetrology,Herts,UK) toobtain thegeneralporosity distribution. Then,asmall regionwith thehighestporositycontentwaschosentoundergodetailed scanningusing160kVZeissXRadia510Versa (CarlZeissMicroscopyGmbH,Jena,Germany)with highresolutionof3.2μmfor20h.After reconstructionandhandlingofrawimages fromtheXCTscan results,VGStudioMaxsoftware (VolumeGraphicsGmbH,Heidelberg,Germany)wasusedasa3D visualisationtool toobtaindetailedporositydistribution in thesmall regionof interest. Theporosity inXCT-scannedsampleswasdefinedusingtheOtsumethoddescribed inRef. [24]. 3.ResultsandDiscussion 3.1.Microstructure Figure2a shows the cross-sectionalviewson thex–y (scandirection)plane,whileFigure2b,c showsthecross-sectionalviewsonthex–zandy–zplanes (builddirection), respectively. Thesemelted scantracksarerepresentativeof thesolidifiedmeltpool foreach layeronthepowderbed. Thecurved “fish-scale”—like geometries observed in the x–z and y–z (build direction) planes are due to the semi-circularshapeof themeltpoolandthepartial re-meltingofsuccessivelydeposited layerswhich havebeensolidified[23]. Theseoverlappinggeometriesalsodemonstratesuccessful fusionofpowder particlesandbondingwithineach layer, similar to theworkcarriedoutbyCherryetal. [1]andYasa andKruth[20]. 121
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals