Seite - 122 - in 3D Printing of Metals
Bild der Seite - 122 -
Text der Seite - 122 -
Metals 2017,7, 64
Figure2.Cross-sectionalviewsofSLMsampleson(a)x–yplane; (b)x–zplane;and(c)y–zplane.
Afinecellular-dendriticmicrostructurecouldbeobservedintheSLM-fabricatedsamplesasshown
inFigure3. This isacommoncharacteristic formetalmaterials fabricatedbyAMprocessesasaresult
of therapidsolidificationrates in the locallymeltedareas (selectively laser-scannedregions)which
wereexperiencedbecauseofshort laser-material interactiontimeduringthebuildprocess [25–27].
Figure3. (a)and(b) showfinecellular-dendriticmicrostructures inSLM-fabricated316LSSspecimens.
It is well understood that the microstructures obtained in AM-processed metal parts,
whichdependontheappliedprocessingparameters, strongly influence themechanicalpropertiesof
theparts, e.g., thedensification levels,yieldandtensilestrengthsandmicrohardness. Furthermore,
thefinemicrostructures obtainedviaAMprocesses lead to improvements in tensile strength and
microhardnesscomparedtoconventionalmanufacturingtechniques [28,29].
3.2. Porosity
Figure4showstheaverageporesizedistribution in theAM316LSSsamplesobtainedbyoptical
microscopy. Theporesizesrangedfrom~5μmto~45μm,where thesmallerpores (≤5μm)accounted
for themajority (~60%)andthe largerpores (>30μm)accountedfor less than3%.Theaverageporosity
of theSLMspecimenswascalculatedtobe0.82%±0.36%,whichmeans thatahighdensification level
(≥99%)wasachieved.
122
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie