Page - 122 - in 3D Printing of Metals
Image of the Page - 122 -
Text of the Page - 122 -
Metals 2017,7, 64
Figure2.Cross-sectionalviewsofSLMsampleson(a)xāyplane; (b)xāzplane;and(c)yāzplane.
Aļ¬necellular-dendriticmicrostructurecouldbeobservedintheSLM-fabricatedsamplesasshown
inFigure3. This isacommoncharacteristic formetalmaterials fabricatedbyAMprocessesasaresult
of therapidsolidiļ¬cationrates in the locallymeltedareas (selectively laser-scannedregions)which
wereexperiencedbecauseofshort laser-material interactiontimeduringthebuildprocess [25ā27].
Figure3. (a)and(b) showļ¬necellular-dendriticmicrostructures inSLM-fabricated316LSSspecimens.
It is well understood that the microstructures obtained in AM-processed metal parts,
whichdependontheappliedprocessingparameters, strongly inļ¬uence themechanicalpropertiesof
theparts, e.g., thedensiļ¬cation levels,yieldandtensilestrengthsandmicrohardness. Furthermore,
theļ¬nemicrostructures obtainedviaAMprocesses lead to improvements in tensile strength and
microhardnesscomparedtoconventionalmanufacturingtechniques [28,29].
3.2. Porosity
Figure4showstheaverageporesizedistribution in theAM316LSSsamplesobtainedbyoptical
microscopy. Theporesizesrangedfrom~5μmto~45μm,where thesmallerpores (ā¤5μm)accounted
for themajority (~60%)andthe largerpores (>30μm)accountedfor less than3%.Theaverageporosity
of theSLMspecimenswascalculatedtobe0.82%±0.36%,whichmeans thatahighdensiļ¬cation level
(ā„99%)wasachieved.
122
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie