Seite - 135 - in 3D Printing of Metals
Bild der Seite - 135 -
Text der Seite - 135 -
Metals 2017,7, 113
substantial increase instiffness. Therimaroundthecentralholewas loadedwithavertical forceof
600N,which is lowenoughtocauseonlyelasticdeflection. In thesizingoptimization, the topfaceof
thepartwasselectedasdesignregion. Theareaaroundthecentralholewasexcludedtoaccount for
the fact thataflat region isneededtoapply theexternal load. Thiswouldalsobe thecase inareal
suspensiondome.
Thesolverminimizes thedisplacementof the loadedrimunder theconstraint that theadded
materialvolumemustnotexceedthevolumeof thepatchwithacrosssectionof1×4mminFigure4b.
Also,amaximumthickness increaseof1mmisspecified. Theresultofsizingoptimizationiscompared
to thestiffnessofbothothercases. Thecomparisonofall caseswasperformedusingfiniteelement
analysis. Inaddition, lasercladdingexperimentswerecarriedout toproduce the tailoredcladding
shown inFigure4c. Thestiffnessof thebasicvariant andof thepartwith local reinforcementwas
tested inexperimentsunderstatic loads.
2.3.2. LaserCladdingExperiments
Inorder toapproach thesolutionwithreinforcement, experimental trialsusing lasercladding
wereperformed.Aring-shapedthickeningofAlSi10Mgwithawidthof4mm,athicknessof1mm
andanouterdiameterof40mmwasappliedtoapre-shapedsample (alloyENAW6082)withawall
thicknessof1mm,accordingtoFigure4a. The lasersourcewasafibercoupleddiode laser (λ=1025
and1040nm)withanoutputpowerof2kW.Thebeamdiameterwas0.6mm,theintensitydistribution
top hat. The beam followed a spiral pathwith a pitch of 0.3mmper revolution. Claddingwas
performedwitha feedof4000mm/min,a laserpowerof860Wandapowder feedrateof1.2g/min.
Three layershadtobecladdedtoachieve thedesiredthickness.Alasercladspecimenwascutanda
crosssectionwaspreparedusingstandardmetallographic techniques.
2.3.3. TestingofComponentStiffness
Inorder toestimate thepotentialof the local reinforcement, thickenedbytailored lasercladding
(Figure4c)andnon-thickened(Figure4a)componentswere testedunderstatic loads inaZwickZ250
testingmachine(ZwickGmbH&Co.KG,Ulm,Germany). Surfacemachiningoperationswereapplied
before testing to improve thesurfacequalityandtocorrect thegeometry forprecisecomparisonof the
results. Furthermore thisallowsaparallelalignmentof the topfacewhere the loadisappliedto the
bottompedestal.Duringtheexperiments the force-displacementcharacteristicswererecorded.
2.4.Demonstrator II:FlangingofLocallyCladSheet
2.4.1.DemonstratorGeometry
Thisdemonstrator is concernedwith themanufacturingofa local claddingonsheetmetalblanks,
whicharesubsequentlyprocessedbyholeflanging.Holeflangesare important functionalelements in
manysheetmetalparts. Theyprovidestiffness,allowforpositioningandfixation,etc. Increasingthe
wall thicknessof theflangemaybenecessary forsubsequentoperationssuchascuttinga thread into
theflange,asdetailed in the introductionof thepaper. Thecasestudycomprises themanufacturingof
claddedblanks in twodifferentvariants, claddingontheoutsideof theflange,Figure5a,andonthe
insideof theflange,Figure5b.
Figure5. Investigatedtypesof thecladdingfor local reinforcement: claddingontheoutsideofflange
(a) andcladdingonthe insideof theflange(b).
135
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie