Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 135 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 135 - in 3D Printing of Metals

Image of the Page - 135 -

Image of the Page - 135 - in 3D Printing of Metals

Text of the Page - 135 -

Metals 2017,7, 113 substantial increase instiffness. Therimaroundthecentralholewas loadedwithavertical forceof 600N,which is lowenoughtocauseonlyelasticdeflection. In thesizingoptimization, the topfaceof thepartwasselectedasdesignregion. Theareaaroundthecentralholewasexcludedtoaccount for the fact thataflat region isneededtoapply theexternal load. Thiswouldalsobe thecase inareal suspensiondome. Thesolverminimizes thedisplacementof the loadedrimunder theconstraint that theadded materialvolumemustnotexceedthevolumeof thepatchwithacrosssectionof1×4mminFigure4b. Also,amaximumthickness increaseof1mmisspecified. Theresultofsizingoptimizationiscompared to thestiffnessofbothothercases. Thecomparisonofall caseswasperformedusingfiniteelement analysis. Inaddition, lasercladdingexperimentswerecarriedout toproduce the tailoredcladding shown inFigure4c. Thestiffnessof thebasicvariant andof thepartwith local reinforcementwas tested inexperimentsunderstatic loads. 2.3.2. LaserCladdingExperiments Inorder toapproach thesolutionwithreinforcement, experimental trialsusing lasercladding wereperformed.Aring-shapedthickeningofAlSi10Mgwithawidthof4mm,athicknessof1mm andanouterdiameterof40mmwasappliedtoapre-shapedsample (alloyENAW6082)withawall thicknessof1mm,accordingtoFigure4a. The lasersourcewasafibercoupleddiode laser (λ=1025 and1040nm)withanoutputpowerof2kW.Thebeamdiameterwas0.6mm,theintensitydistribution top hat. The beam followed a spiral pathwith a pitch of 0.3mmper revolution. Claddingwas performedwitha feedof4000mm/min,a laserpowerof860Wandapowder feedrateof1.2g/min. Three layershadtobecladdedtoachieve thedesiredthickness.Alasercladspecimenwascutanda crosssectionwaspreparedusingstandardmetallographic techniques. 2.3.3. TestingofComponentStiffness Inorder toestimate thepotentialof the local reinforcement, thickenedbytailored lasercladding (Figure4c)andnon-thickened(Figure4a)componentswere testedunderstatic loads inaZwickZ250 testingmachine(ZwickGmbH&Co.KG,Ulm,Germany). Surfacemachiningoperationswereapplied before testing to improve thesurfacequalityandtocorrect thegeometry forprecisecomparisonof the results. Furthermore thisallowsaparallelalignmentof the topfacewhere the loadisappliedto the bottompedestal.Duringtheexperiments the force-displacementcharacteristicswererecorded. 2.4.Demonstrator II:FlangingofLocallyCladSheet 2.4.1.DemonstratorGeometry Thisdemonstrator is concernedwith themanufacturingofa local claddingonsheetmetalblanks, whicharesubsequentlyprocessedbyholeflanging.Holeflangesare important functionalelements in manysheetmetalparts. Theyprovidestiffness,allowforpositioningandfixation,etc. Increasingthe wall thicknessof theflangemaybenecessary forsubsequentoperationssuchascuttinga thread into theflange,asdetailed in the introductionof thepaper. Thecasestudycomprises themanufacturingof claddedblanks in twodifferentvariants, claddingontheoutsideof theflange,Figure5a,andonthe insideof theflange,Figure5b. Figure5. Investigatedtypesof thecladdingfor local reinforcement: claddingontheoutsideofflange (a) andcladdingonthe insideof theflange(b). 135
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals