Seite - 152 - in 3D Printing of Metals
Bild der Seite - 152 -
Text der Seite - 152 -
Metals 2016,6, 313
Figure6.Thinwallwitha1.2mmlayer thickness foreach layer: (a)Mainview. (b)Cross-sectionview.
(c)Cross-sectiondatastatistics.
4.Conclusions
To conclude, a newmetal 3Dprintingprocess—micro-coatingmetal additivemanufacturing
(MCMAM)—wasinvestigated in thispaper. Theformingmorphologiesof thedepositedthin-walled
specimenswereanalyzed,andthemainfindingsaresummarizedas follows:
• TheMCMAMtechnologyisconsideredaneconomicalandeffectiveformingprocess. Theforming
efficiencyof theMCMAMupto50mm3/s (viz. 1490g/h) isdoubled, compared to themetal
dropletdeposition.
• The layer thickness isoneof themajor factors, influencing the formingmorphology. The forming
morphologyof the thin-wall specimen is relatively thebestwhen the layer thickness is set to
1.2mm,andthemetallurgicalbondingof theadjacent layerscanbeobtained.
• The waviness was used to analyze the forming morphology of the thin-walled specimen.
Thevaluesof thesurfacewaviness indexesareWa=0.9448,Wq=0.963,andWz=0.303when
the layer thickness is1.2mm.
Acknowledgments: Project supported by the State Key Development Program Research of China
(2016YFB1100400), thenationalproject (20140530)“3DPrintingElectricalFittingsDropletFormingandShaping
theExperimentalPrototypeDevelopmentPlatform”, theChinaPostdoctoralScienceFoundation(2014m560764)
“Study on Metal Micro Jet Droplet Electromagnetic Confinement Deposition Forming Mechanism” and
theFundamentalResearchFundsfor theCentralUniversities (xjj2016124).
Author Contributions: Jun Du and ZhengyingWei conceived and designed the experiments; XinWang,
XueweiFang,andGuangxiZhaoperformedtheexperiments;HaoBaiandWeiLiuanalyzedthedata;ChuanqiRen
andYunfeiYaocontributedreagents/materials/analysis tools;XinWangwrote thepaper.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Beaman, J.J.;Deckard,C.R.SelectiveLaserSinteringwithAssistedPowderHandling.U.S.Patent4938816,
1990.
2. Arcella,F.G.;Froes,F.H.Producingtitaniumaerospacecomponents frompowderusing laser forming. JOM
2000,52, 2–30. [CrossRef]
3. Clare,A.T.;Chalker,P.R.;Davies,S.; Sutcliffe,C.J.;Tsopanos,S.Selective lasermeltingofhighaspect ratio3D
nickel–titaniumstructures twowaytrainedforMEMSapplications. Int. J.Mech.Mater.Des. 2008,4, 181–187.
[CrossRef]
4. Aiyiti,W. Investigationof theoverlappingparametersofMPAW-basedrapidprototyping.RapidPrototyp. J.
2006,12, 165–172. [CrossRef]
152
zurück zum
Buch 3D Printing of Metals"
3D Printing of Metals
- Titel
- 3D Printing of Metals
- Autor
- Manoj Gupta
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 170
- Schlagwörter
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Kategorien
- Naturwissenschaften Chemie