Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Algorithms for Scheduling Problems
Seite - 4 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 4 - in Algorithms for Scheduling Problems

Bild der Seite - 4 -

Bild der Seite - 4 - in Algorithms for Scheduling Problems

Text der Seite - 4 -

Algorithms 2018,11, 18 2.MILPFormulationfor theProblem Thispaperstudiesanenergy-efïŹcientsinglemachineschedulingproblemunderTOUelectricity tariffs. Theproblemcanalsobe calleda singlemachine schedulingproblemwith electricity costs (SMSEC).Considerasetof jobsN={1,2, . . . ,n} thatneedtobeprocessedonasinglemachinewith theobjectiveofminimizingtheelectricitycost. It isassumedthatall the jobsmustbeprocessedata uniformspeed. Each job i∈Nhas itsuniqueprocessingtime tiandpowerconsumptionperhourpi. Amachinecanprocess,atmost,one jobata time,andwhenit isprocessinga job,nopreemption is allowed. Each jobandthemachineareavailable forprocessingat time instant0.Machinebreakdown andpreventivemaintenancearenotconsidered in thispaper. Themachine ismainlypoweredbyelectricity. Theelectricityprice followsaTOUpricingscheme representedbyasetof timeperiodsM={1,2, . . . ,m},witheachperiodk∈M,havinganelectricity price ck andastarting timebk. The intervalofperiodk is representedby[bk,bk+1],k∈M, andb1 =0 is alwaysestablished. It isassumedthat theCmax is thegivenmakespanandbm+1≄Cmax. Thismeans thata feasiblesolutionalwaysexists. Themainworkof thisproblemis toassignasetof jobs toperiodswithdifferentelectricityprices in the timehorizon [0, bm+1] tominimize total electricity cost, and themain task is todetermine to whichperiod(s)a job isassignedandhowlonga job isprocessed ineachperiod.Hence, twodecision variablesaregivenasfollows.Notethat thestartingtimeofeach jobcanbedeterminedbythedecision variables (i.e.,xi,k andyi,k). xi,k: assignedprocessingtimeof job i inperiodk, i∈N,k∈M; yi,k= { 1,if job iorpartof job i isprocessed inperiodk 0,othertwise , i∈N,k∈M. In addition, a job is calledprocessedwithin aperiod if both its starting timeandcompletion timearewithin thesameperiod.Otherwise, it is calledprocessedacrossperiods [9]. Letdk andXk, k∈M, represent thedurationofperiodkandthe totalalreadyassignedprocessingtimes inperiodk, respectively. Thedifferencebetweendk andXk isdeïŹnedas theremaining idle timeofperiodkwhich is representedby Ik,k∈M. If Ik=0, theperiodk is called full. TheMILPmodel for thesinglemachineschedulingproblemcanbepresentedas follows: MinTEC= n ∑ i=1 m ∑ k=1 pixi,kci (1) s.t. m ∑ k=1 xi,k= ti, i∈N; (2) n ∑ i=1 xi,k≀ bk+1−bk,k∈M; (3) xi,k≀ tiyi,k, i∈N,k∈M; (4) l−1 ∑ k=j+1 yi,k≄ (l− j−1)(yi,l+yi,j−1), i∈N,3≀ l≀m,1≀ j≀ l−2; (5) xi,k≄ (yi,k−1+yi,k+1−1)(bk+1−bk), i∈N,2≀ k≀m−1; (6) yi,k+yi,k+1+yj,k+yj,k+1≀3, i∈N, j∈N,1≀ k≀m−1, i = j. (7) Equation(1), theobjective is tominimize the totalelectricitycost (TEC).Constraints (2)–(4)are associatedwith theprocessingtimeassignedtoperiods.Constraints (5)and(6)areusedtoguarantee thenon-preemptiveassumption. SpeciïŹcally, constraint (5)guarantees that if a job isprocessedacross 4
zurĂŒck zum  Buch Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
Titel
Algorithms for Scheduling Problems
Autoren
Frank Werner
Larysa Burtseva
Yuri Sotskov
Herausgeber
MDPI
Ort
Basel
Datum
2018
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-120-7
Abmessungen
17.0 x 24.4 cm
Seiten
212
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorien
Informatik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Algorithms for Scheduling Problems