Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Algorithms for Scheduling Problems
Page - 4 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 4 - in Algorithms for Scheduling Problems

Image of the Page - 4 -

Image of the Page - 4 - in Algorithms for Scheduling Problems

Text of the Page - 4 -

Algorithms 2018,11, 18 2.MILPFormulationfor theProblem Thispaperstudiesanenergy-efficientsinglemachineschedulingproblemunderTOUelectricity tariffs. Theproblemcanalsobe calleda singlemachine schedulingproblemwith electricity costs (SMSEC).Considerasetof jobsN={1,2, . . . ,n} thatneedtobeprocessedonasinglemachinewith theobjectiveofminimizingtheelectricitycost. It isassumedthatall the jobsmustbeprocessedata uniformspeed. Each job i∈Nhas itsuniqueprocessingtime tiandpowerconsumptionperhourpi. Amachinecanprocess,atmost,one jobata time,andwhenit isprocessinga job,nopreemption is allowed. Each jobandthemachineareavailable forprocessingat time instant0.Machinebreakdown andpreventivemaintenancearenotconsidered in thispaper. Themachine ismainlypoweredbyelectricity. Theelectricityprice followsaTOUpricingscheme representedbyasetof timeperiodsM={1,2, . . . ,m},witheachperiodk∈M,havinganelectricity price ck andastarting timebk. The intervalofperiodk is representedby[bk,bk+1],k∈M, andb1 =0 is alwaysestablished. It isassumedthat theCmax is thegivenmakespanandbm+1≄Cmax. Thismeans thata feasiblesolutionalwaysexists. Themainworkof thisproblemis toassignasetof jobs toperiodswithdifferentelectricityprices in the timehorizon [0, bm+1] tominimize total electricity cost, and themain task is todetermine to whichperiod(s)a job isassignedandhowlonga job isprocessed ineachperiod.Hence, twodecision variablesaregivenasfollows.Notethat thestartingtimeofeach jobcanbedeterminedbythedecision variables (i.e.,xi,k andyi,k). xi,k: assignedprocessingtimeof job i inperiodk, i∈N,k∈M; yi,k= { 1,if job iorpartof job i isprocessed inperiodk 0,othertwise , i∈N,k∈M. In addition, a job is calledprocessedwithin aperiod if both its starting timeandcompletion timearewithin thesameperiod.Otherwise, it is calledprocessedacrossperiods [9]. Letdk andXk, k∈M, represent thedurationofperiodkandthe totalalreadyassignedprocessingtimes inperiodk, respectively. Thedifferencebetweendk andXk isdefinedas theremaining idle timeofperiodkwhich is representedby Ik,k∈M. If Ik=0, theperiodk is called full. TheMILPmodel for thesinglemachineschedulingproblemcanbepresentedas follows: MinTEC= n āˆ‘ i=1 m āˆ‘ k=1 pixi,kci (1) s.t. m āˆ‘ k=1 xi,k= ti, i∈N; (2) n āˆ‘ i=1 xi,k≤ bk+1āˆ’bk,k∈M; (3) xi,k≤ tiyi,k, i∈N,k∈M; (4) lāˆ’1 āˆ‘ k=j+1 yi,k≄ (lāˆ’ jāˆ’1)(yi,l+yi,jāˆ’1), i∈N,3≤ l≤m,1≤ j≤ lāˆ’2; (5) xi,k≄ (yi,kāˆ’1+yi,k+1āˆ’1)(bk+1āˆ’bk), i∈N,2≤ k≤māˆ’1; (6) yi,k+yi,k+1+yj,k+yj,k+1≤3, i∈N, j∈N,1≤ k≤māˆ’1, i = j. (7) Equation(1), theobjective is tominimize the totalelectricitycost (TEC).Constraints (2)–(4)are associatedwith theprocessingtimeassignedtoperiods.Constraints (5)and(6)areusedtoguarantee thenon-preemptiveassumption. Specifically, constraint (5)guarantees that if a job isprocessedacross 4
back to the  book Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
Title
Algorithms for Scheduling Problems
Authors
Frank Werner
Larysa Burtseva
Yuri Sotskov
Editor
MDPI
Location
Basel
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-3-03897-120-7
Size
17.0 x 24.4 cm
Pages
212
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Categories
Informatik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Algorithms for Scheduling Problems