Seite - 9 - in Algorithms for Scheduling Problems
Bild der Seite - 9 -
Text der Seite - 9 -
Algorithms 2018,11, 18
Toensure that cost1= pi×(xi,k×cA+xixi,k−1×cΓ)alwaysholds,Property2 isgivenfirst.
Property2.WhenCondition4 is satisfiedanddk+1=0, job i canbedirectly inserted intoPosition1without
movinganyalready inserted jobs inperiodk−1.
Proof. Since∃k∈A, Ik>0, theremustbeno jobsprocessedwithinperiodk−1. It isonlypossible
that a job, say job j, j< i, is processedacrossperiods k− 2and k− 1. Therefore,xj,k−2maybe the
valueof themaximal remaining idle timeofallmid-peakperiodsbefore inserting job j. Since∃k′ ∈B,
ti≤ Ik’ and j< i, it is understandable that ti ≤ Ik′ ≤ xj,k−2.Now, job i is to be inserted, it follows
that ti+xj,k−1≤ xj,k−2+xj,k−1= tj.Asmentionedearlier, theprocessingtimesofall the jobsdonot
exceedthedurationof theshorteston-peakperiod, that is, tj≤dk−1.Hence, ti+xj,k−1≤dk−1. If job i
isprocessedacrossperiodskandk−1, thenxi,k−1+xj,k−1≤ xi,k−1+xi,k+xj,k−1= ti+xj,k−1≤ dk+1.
That is, xi,k−1+xj,k−1 ≤ dk−1. Thus, dk−1−xj,k−1−xi,k−1 = Ik−1 ≥ 0. This suggestswhen job i is
inserted intoPosition1,periodk−1cannotbe full.Hence, job icanbedirectly inserted intoPosition1
withoutmovinganyalreadyinserted jobs inperiodk−1.Note that thispropertyapplies toScenario2
aswell.
AccordingtoProperty2,cost1 = pi× (xi,k×cA+xi,k−1×cΓ) isalwayssatisfied. Inthefollowing
part, three formulas forcalculatingthe insertioncostsofPositions1,3,and4aregiven.
cost1 = pi× (xi,k×cA+xi,k−1×cΓ); (9)
cost3 = pi× (xi,ksm×cA+xi,ksm+1×cB+xi,ksm+2×cΓ); (10)
cost4 = pi× ti×cB. (11)
Since cost1 isalways less than cost2, there isnoneedtocompute cost2. Eventually, the insertion
costsofall thepossiblepositions that job icanbe inserted intocanbeeasilyanddirectlycalculatedby
theaboveformulas,andthenthepositionwithminimuminsertioncostwillbechosen.
Scenario2: It canbeseenfromFigure6bthat thePositions1,4,and5 inScenario2are thesame
as thePositions1,3,and4 inScenario1. TheonlydifferencebetweenScenarios1and2 iswhetherdk+1
>0ornot (i.e.,periodk+1exists). Sinceperiodk+1isamid-peakperiod, twoadditionalpositions
needtobeconsidered incomparisonwithScenario1.
1. Aset of already inserted jobs inperiod karemoved to the rightmost sideof theperiod k+1,
andthen job i isprocessedacrossperiodskandk−1.
2. Asetofalready inserted jobs inperiodk shouldbemovedto the leftuntil job icanbeprocessed
acrossperiodskandk+1.
Thesizeof the twoinsertioncosts (i.e., theprocessingelectricitycostof job6plus themovement
costsof jobs3,4, and5)correspondingtoPositions2and3 isuncertain,because theelectricitycost
forprocessing job i isgreateratPosition2 thanatPosition3,while themovementcostsare just the
opposite. Eventually, it shouldcalculate insertioncostsoffivepossiblepositions,andthenchoose the
positionwithminimumcost.
Condition5:∀k∈A, Ik=0.
WhenCondition5 is satisfied, thismeansall theoff-peakperiodsare full and job icanbedirectly
processedwithinamid-peakperiod.
Layer 3 includesConditions 6 and7. Most of the jobs areprocessed across apair of periods
consistingof amid-peakperiodandanon-peakperiodorprocessedwithin anon-peakperiod in
this layer.
Condition6: ti>maxk′∈B{Ik′}>0.
9
zurück zum
Buch Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
- Titel
- Algorithms for Scheduling Problems
- Autoren
- Frank Werner
- Larysa Burtseva
- Yuri Sotskov
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-120-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 212
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorien
- Informatik
- Technik