Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Algorithms for Scheduling Problems
Page - 9 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 9 - in Algorithms for Scheduling Problems

Image of the Page - 9 -

Image of the Page - 9 - in Algorithms for Scheduling Problems

Text of the Page - 9 -

Algorithms 2018,11, 18 Toensure that cost1= pi×(xi,k×cA+xixi,k−1×cΓ)alwaysholds,Property2 isgivenfirst. Property2.WhenCondition4 is satisfiedanddk+1=0, job i canbedirectly inserted intoPosition1without movinganyalready inserted jobs inperiodk−1. Proof. Since∃k∈A, Ik>0, theremustbeno jobsprocessedwithinperiodk−1. It isonlypossible that a job, say job j, j< i, is processedacrossperiods k− 2and k− 1. Therefore,xj,k−2maybe the valueof themaximal remaining idle timeofallmid-peakperiodsbefore inserting job j. Since∃k′ ∈B, ti≤ Ik’ and j< i, it is understandable that ti ≤ Ik′ ≤ xj,k−2.Now, job i is to be inserted, it follows that ti+xj,k−1≤ xj,k−2+xj,k−1= tj.Asmentionedearlier, theprocessingtimesofall the jobsdonot exceedthedurationof theshorteston-peakperiod, that is, tj≤dk−1.Hence, ti+xj,k−1≤dk−1. If job i isprocessedacrossperiodskandk−1, thenxi,k−1+xj,k−1≤ xi,k−1+xi,k+xj,k−1= ti+xj,k−1≤ dk+1. That is, xi,k−1+xj,k−1 ≤ dk−1. Thus, dk−1−xj,k−1−xi,k−1 = Ik−1 ≥ 0. This suggestswhen job i is inserted intoPosition1,periodk−1cannotbe full.Hence, job icanbedirectly inserted intoPosition1 withoutmovinganyalreadyinserted jobs inperiodk−1.Note that thispropertyapplies toScenario2 aswell. AccordingtoProperty2,cost1 = pi× (xi,k×cA+xi,k−1×cΓ) isalwayssatisfied. Inthefollowing part, three formulas forcalculatingthe insertioncostsofPositions1,3,and4aregiven. cost1 = pi× (xi,k×cA+xi,k−1×cΓ); (9) cost3 = pi× (xi,ksm×cA+xi,ksm+1×cB+xi,ksm+2×cΓ); (10) cost4 = pi× ti×cB. (11) Since cost1 isalways less than cost2, there isnoneedtocompute cost2. Eventually, the insertion costsofall thepossiblepositions that job icanbe inserted intocanbeeasilyanddirectlycalculatedby theaboveformulas,andthenthepositionwithminimuminsertioncostwillbechosen. Scenario2: It canbeseenfromFigure6bthat thePositions1,4,and5 inScenario2are thesame as thePositions1,3,and4 inScenario1. TheonlydifferencebetweenScenarios1and2 iswhetherdk+1 >0ornot (i.e.,periodk+1exists). Sinceperiodk+1isamid-peakperiod, twoadditionalpositions needtobeconsidered incomparisonwithScenario1. 1. Aset of already inserted jobs inperiod karemoved to the rightmost sideof theperiod k+1, andthen job i isprocessedacrossperiodskandk−1. 2. Asetofalready inserted jobs inperiodk shouldbemovedto the leftuntil job icanbeprocessed acrossperiodskandk+1. Thesizeof the twoinsertioncosts (i.e., theprocessingelectricitycostof job6plus themovement costsof jobs3,4, and5)correspondingtoPositions2and3 isuncertain,because theelectricitycost forprocessing job i isgreateratPosition2 thanatPosition3,while themovementcostsare just the opposite. Eventually, it shouldcalculate insertioncostsoffivepossiblepositions,andthenchoose the positionwithminimumcost. Condition5:∀k∈A, Ik=0. WhenCondition5 is satisfied, thismeansall theoff-peakperiodsare full and job icanbedirectly processedwithinamid-peakperiod. Layer 3 includesConditions 6 and7. Most of the jobs areprocessed across apair of periods consistingof amid-peakperiodandanon-peakperiodorprocessedwithin anon-peakperiod in this layer. Condition6: ti>maxk′∈B{Ik′}>0. 9
back to the  book Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
Title
Algorithms for Scheduling Problems
Authors
Frank Werner
Larysa Burtseva
Yuri Sotskov
Editor
MDPI
Location
Basel
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-3-03897-120-7
Size
17.0 x 24.4 cm
Pages
212
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Categories
Informatik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Algorithms for Scheduling Problems