Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 28 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 28 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 28 -

Bild der Seite - 28 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 28 -

Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles Conde, J., Larguinho, M., Cordeiro, A., Raposo, L. R., Costa, P. M., Santos, S., et al. (2014b).Gold-nanobeacons for gene therapy: evaluationof genotoxicity, cell toxicity and proteome profiling analysis.Nanotoxicology 8, 521–532. doi: 10.3109/17435390.2013.802821 Conde, J., Rosa, J., and Baptista, P. (2013a). Gold-nanobeacons as a theranostic system for thedetection and inhibitionof specific genes.Protoc. Exch.doi: 10. 1038/protex.2013.088 Conde,J.,Rosa,J.,delaFuente, J.M.,andBaptist,P.V.(2013b).Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events.Biomaterials 34, 2516–2523. doi: 10.1016/j.biomaterials.2012. 12.015 Conde, J., Rosa, J., Lima, J. C., and Baptista, P. V. (2012d). Nanophotonics for moleculardiagnostics and therapyapplications. Int. J. Photoenergy2012, 1–11. doi:10.1155/2012/619530 Conde, J., Tian, F., Hernandez, Y., Bao, C., Cui, D., Janssen, K. P., et al. (2013c). In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA cou- pled to inflammatory response in lung cancermousemodels.Biomaterials34, 7744–7753.doi:10.1016/j.biomaterials.2013.06.041 Cronan, J.E. (1990).Biotinationofproteins invivo -aposttranslationalmodifica- tionto label,purify, andstudyproteins. J.Biol.Chem.265,10327–10333. Crut,A.,Geron-Landre,B., Bonnet, I., Bonneau, S.,Desbiolles, P., andEscude,C. (2005). Detection of single DNAmolecules bymulticolor quantum-dot end- labeling.NucleicAcidsRes.33:e98.doi:10.1093/nar/gni097 Cull,M.G., andSchatz, P. J. (2000). Biotinylationof proteins in vivo and in vitro using small peptide tags.MethodsEnzymol.326, 430–440. doi: 10.1016/S0076- 6879(00)26068-0 Curnis,F.,Sacchi,A.,Gasparri,A.,Longhi,R.,Bachi,A.,Doglioni,C.,etal. (2008). Isoaspartate-glycine-arginine: anewtumorvasculature-targetingmotif.Cancer Res.68,7073–7082.doi:10.1158/0008-5472.CAN-08-1272 Daou, T. J., Li, L., Reiss, P., Josserand, V., and Texier, I. (2009). Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantumdots. Langmuir25,3040–3044.doi:10.1021/la8035083 de laFuente, J.M.,Alcantara,D.,Eaton,P.,Crespo,P.,Rojas,T.C., Fernandez,A., et al. (2006).Goldandgold-ironoxidemagnetic glyconanoparticles: synthesis, characterization andmagnetic properties. J. Phys. Chem.B 110, 13021–13028. doi:10.1021/jp062522s de la Fuente, J.M., Barrientos,A.G., Rojas, T.C., Rojo, J., Canada, J., Fernandez, A., et al. (2001).Goldglyconanoparticles aswater-solublepolyvalentmodels to studycarbohydrateinteractions.Angew.Chem.Int.Ed.Engl.40,2257–2261.doi: 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S de la Fuente, J.M., and Berry, C. C. (2005). Tat peptide as an efficientmolecule to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16, 1176–1180.doi:10.1021/bc050033+ de la Fuente, J. M., Eaton, P., Barrientos, A. G., Menendez, M., and Penades, S. (2005). Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J.Am.Chem.Soc.127,6192–6197.doi: 10.1021/ja0431354 de la Fuente, J. M., and Penades, S. (2004). Understanding carbohydrate- carbohydrate interactions bymeans of glyconanotechnology.Glycoconj. J. 21, 149–163.doi:10.1023/B:GLYC.0000044846.80014.cb de la Fuente, J. M., and Penades, S. (2006). Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine andmaterial science. Biochim. Biophys.Acta1760,636–651.doi:10.1016/j.bbagen.2005.12.001 De, M., Miranda, O. R., Rana, S., and Rotello, V. M. (2009). Size and geome- trydependentprotein-nanoparticle self-assembly.Chem.Commun.2157–2159. doi:10.1039/b900552h Demers, L.M.,Mirkin, C. A.,Mucic, R. C., Reynolds, R. A. III., Letsinger, R. L., Elghanian,R., et al. (2000).Afluorescence-basedmethod for determining the surface coverage andhybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles.Anal. Chem. 72, 5535–5541. doi: 10.1021/ac0006627 Deng, Z. J., Liang, M., Monteiro, M., Toth, I., and Minchin, R. F. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 recep- tor activation and inflammation. Nat. Nanotechnol. 6, 39–44. doi: 10.1038/nnano.2010.250 Derfus, A.M., Chen, A. A.,Min, D.H., Ruoslahti, E., and Bhatia, S. N. (2007). Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem. 18, 1391–1396.doi:10.1021/bc060367e Devaraj,N.K., Keliher, E. J., Thurber,G.M.,Nahrendorf,M., andWeissleder, R. (2009).18Flabelednanoparticlesfor invivoPET-CTImaging.Bioconjug.Chem. 20,397–401.doi:10.1021/bc8004649 Dhar, S., Daniel, W. L., Giljohann, D. A., Mirkin, C. A., and Lippard, S. J. (2009). Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV)warheads. J. Am.Chem. Soc.131, 14652–14653. doi: 10.1021/ja9071282 Diagaradjane,P.,Orenstein-Cardona, J.M.,Colon-Casasnovas,N.E.,Deorukhkar, A., Shentu, S.,Kuno,N., et al. (2008). Imaging epidermal growth factor recep- torexpression invivo: pharmacokineticandbiodistributioncharacterizationof a bioconjugated quantumdot nanoprobe.Clin. Cancer Res. 14, 731–741. doi: 10.1158/1078-0432.CCR-07-1958 Dobson, J. (2006). Gene therapy progress and prospects:magnetic nanoparticle- basedgenedelivery.GeneTher.13,283–287.doi:10.1038/sj.gt.3302720 Donega, C. D. (2011). Synthesis and properties of colloidal heteronanocrystals. Chem.Soc.Rev.40,1512–1546.doi:10.1039/c0cs00055h Dong,C.M.(2011).Glyconanoparticles forbiomedicalapplications.Comb.Chem. HighThroughputScreen.14,173–181.doi:10.2174/138620711794728716 Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assuncao, M., et al. (2012). Noblemetal nanoparticles for biosensing applications. Sensors(Basel) 12,1657–1687.doi:10.3390/s120201657 Doria, G., Larguinho,M., Dias, J. T., Pereira, E., Franco, R., and Baptista, P. V. (2010). Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology21:255101.doi:10.1088/0957-4484/21/25/255101 Dreaden,E.C.,Alkilany,A.M.,Huang,X.H.,Murphy,C. J., andEl-Sayed,M.A. (2012).Thegoldenage:goldnanoparticles forbiomedicine.Chem.Soc.Rev.41, 2740–2779.doi:10.1039/c1cs15237h Dubertret,B. (2005).Quantumdots-DNAdetectives.Nat.Mater.4,797–798.doi: 10.1038/nmat1520 Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A. (2002). In vivo imaging of quantumdots encapsulated in phos- pholipidmicelles.Science298,1759–1762.doi:10.1126/science.1077194 East,D.A.,Mulvihill, D. P., Todd,M., andBruce, I. J. (2011).QD-antibody con- jugates via carbodiimide-mediated coupling: a detailed study of the variables involved and apossible newmechanism for the coupling reactionunder basic aqueousconditions.Langmuir27,13888–13896.doi:10.1021/la203273p Edwards, P. P., and Thomas, J.M. (2007). Gold in ametallic divided state–from Faradaytopresent-daynanoscience.Angew.Chem.Int.Ed.Engl.46,5480–5486. doi:10.1002/anie.200700428 El-Boubbou,K., andHuang,X. (2011).Glyco-nanomaterials: translating insights from the “sugar-code” to biomedical applications. Curr. Med. Chem. 18, 2060–2078.doi:10.2174/092986711795656144 El-Boubbou, K., Zhu,D. C., Vasileiou, C., Borhan, B., Prosperi, D., Li,W., et al. (2010).Magneticglyco-nanoparticles: a tool todetect,differentiate, andunlock the glyco-codes of cancer viamagnetic resonance imaging. J. Am. Chem. Soc. 132,4490–4499.doi:10.1021/ja100455c El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264. doi: 10.1021/ar960016n Elbakry,A.,Zaky,A.,Liebkl,R.,Rachel,R.,Goepferich,A.,andBreunig,M.(2009). Layer-by-layer assembled gold nanoparticles for siRNAdelivery.Nano Lett. 9, 2059–2064.doi:10.1021/nl9003865 Fang, C., and Zhang, M. Q. (2009). Multifunctional magnetic nanoparti- cles for medical imaging applications. J. Mater. Chem. 19, 6258–6266. doi: 10.1039/b902182e Faraday, M. (1857). Experimental relations of gold (and other metals) to light. Philos.Trans.R.Soc.Lond. 147,145–181.doi:10.1098/rstl.1857.0011 Feng,C. L.,Dou,X.Q., Liu,Q. L., Zhang,W.,Gu, J. J., Zhu, S.M., et al. (2013). Dual-specific interaction todetectDNAongoldnanoparticles.Sensors (Basel) 13,5749–5756.doi:10.3390/s130505749 Fichou,Y., andFerec,C. (2006).Thepotential of oligonucleotides for therapeutic applications.TrendsBiotechnol.24,563–570.doi:10.1016/j.tibtech.2006.10.003 Fleming, D. A., Thode, C. J., andWilliams,M. E. (2006). Triazole cycloaddition as a general route for functionalization ofAunanoparticles.Chem.Mater. 18, 2327–2334.doi:10.1021/cm060157b Foy, S. P., Manthe, R. L., Foy, S. T., Dimitrijevic, S., Krishnamurthy, N., and Labhasetwar, V. (2010). Optical imaging and magnetic field targeting of magnetic nanoparticles in tumors. ACS Nano 4, 5217–5224. doi: 10.1021/ nn101427t www.frontiersin.org July2014 |Volume2 |Article48 | 28
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics