Seite - 28 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 28 -
Text der Seite - 28 -
Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles
Conde, J., Larguinho, M., Cordeiro, A., Raposo, L. R., Costa, P. M., Santos, S.,
et al. (2014b).Gold-nanobeacons for gene therapy: evaluationof genotoxicity,
cell toxicity and proteome profiling analysis.Nanotoxicology 8, 521–532. doi:
10.3109/17435390.2013.802821
Conde, J., Rosa, J., and Baptista, P. (2013a). Gold-nanobeacons as a theranostic
system for thedetection and inhibitionof specific genes.Protoc. Exch.doi: 10.
1038/protex.2013.088
Conde,J.,Rosa,J.,delaFuente, J.M.,andBaptist,P.V.(2013b).Gold-nanobeacons
for simultaneous gene specific silencing and intracellular tracking of the
silencing events.Biomaterials 34, 2516–2523. doi: 10.1016/j.biomaterials.2012.
12.015
Conde, J., Rosa, J., Lima, J. C., and Baptista, P. V. (2012d). Nanophotonics for
moleculardiagnostics and therapyapplications. Int. J. Photoenergy2012, 1–11.
doi:10.1155/2012/619530
Conde, J., Tian, F., Hernandez, Y., Bao, C., Cui, D., Janssen, K. P., et al. (2013c).
In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA cou-
pled to inflammatory response in lung cancermousemodels.Biomaterials34,
7744–7753.doi:10.1016/j.biomaterials.2013.06.041
Cronan, J.E. (1990).Biotinationofproteins invivo -aposttranslationalmodifica-
tionto label,purify, andstudyproteins. J.Biol.Chem.265,10327–10333.
Crut,A.,Geron-Landre,B., Bonnet, I., Bonneau, S.,Desbiolles, P., andEscude,C.
(2005). Detection of single DNAmolecules bymulticolor quantum-dot end-
labeling.NucleicAcidsRes.33:e98.doi:10.1093/nar/gni097
Cull,M.G., andSchatz, P. J. (2000). Biotinylationof proteins in vivo and in vitro
using small peptide tags.MethodsEnzymol.326, 430–440. doi: 10.1016/S0076-
6879(00)26068-0
Curnis,F.,Sacchi,A.,Gasparri,A.,Longhi,R.,Bachi,A.,Doglioni,C.,etal. (2008).
Isoaspartate-glycine-arginine: anewtumorvasculature-targetingmotif.Cancer
Res.68,7073–7082.doi:10.1158/0008-5472.CAN-08-1272
Daou, T. J., Li, L., Reiss, P., Josserand, V., and Texier, I. (2009). Effect of
poly(ethylene glycol) length on the in vivo behavior of coated quantumdots.
Langmuir25,3040–3044.doi:10.1021/la8035083
de laFuente, J.M.,Alcantara,D.,Eaton,P.,Crespo,P.,Rojas,T.C., Fernandez,A.,
et al. (2006).Goldandgold-ironoxidemagnetic glyconanoparticles: synthesis,
characterization andmagnetic properties. J. Phys. Chem.B 110, 13021–13028.
doi:10.1021/jp062522s
de la Fuente, J.M., Barrientos,A.G., Rojas, T.C., Rojo, J., Canada, J., Fernandez,
A., et al. (2001).Goldglyconanoparticles aswater-solublepolyvalentmodels to
studycarbohydrateinteractions.Angew.Chem.Int.Ed.Engl.40,2257–2261.doi:
10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S
de la Fuente, J.M., and Berry, C. C. (2005). Tat peptide as an efficientmolecule
to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16,
1176–1180.doi:10.1021/bc050033+
de la Fuente, J. M., Eaton, P., Barrientos, A. G., Menendez, M., and Penades,
S. (2005). Thermodynamic evidence for Ca2+-mediated self-aggregation
of Lewis X gold glyconanoparticles. A model for cell adhesion via
carbohydrate-carbohydrate interaction. J.Am.Chem.Soc.127,6192–6197.doi:
10.1021/ja0431354
de la Fuente, J. M., and Penades, S. (2004). Understanding carbohydrate-
carbohydrate interactions bymeans of glyconanotechnology.Glycoconj. J. 21,
149–163.doi:10.1023/B:GLYC.0000044846.80014.cb
de la Fuente, J. M., and Penades, S. (2006). Glyconanoparticles: types, synthesis
and applications in glycoscience, biomedicine andmaterial science. Biochim.
Biophys.Acta1760,636–651.doi:10.1016/j.bbagen.2005.12.001
De, M., Miranda, O. R., Rana, S., and Rotello, V. M. (2009). Size and geome-
trydependentprotein-nanoparticle self-assembly.Chem.Commun.2157–2159.
doi:10.1039/b900552h
Demers, L.M.,Mirkin, C. A.,Mucic, R. C., Reynolds, R. A. III., Letsinger, R. L.,
Elghanian,R., et al. (2000).Afluorescence-basedmethod for determining the
surface coverage andhybridization efficiency of thiol-capped oligonucleotides
bound to gold thin films and nanoparticles.Anal. Chem. 72, 5535–5541. doi:
10.1021/ac0006627
Deng, Z. J., Liang, M., Monteiro, M., Toth, I., and Minchin, R. F. (2011).
Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 recep-
tor activation and inflammation. Nat. Nanotechnol. 6, 39–44. doi:
10.1038/nnano.2010.250
Derfus, A.M., Chen, A. A.,Min, D.H., Ruoslahti, E., and Bhatia, S. N. (2007).
Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem. 18,
1391–1396.doi:10.1021/bc060367e Devaraj,N.K., Keliher, E. J., Thurber,G.M.,Nahrendorf,M., andWeissleder, R.
(2009).18Flabelednanoparticlesfor invivoPET-CTImaging.Bioconjug.Chem.
20,397–401.doi:10.1021/bc8004649
Dhar, S., Daniel, W. L., Giljohann, D. A., Mirkin, C. A., and Lippard, S. J.
(2009). Polyvalent oligonucleotide gold nanoparticle conjugates as delivery
vehicles for platinum(IV)warheads. J. Am.Chem. Soc.131, 14652–14653. doi:
10.1021/ja9071282
Diagaradjane,P.,Orenstein-Cardona, J.M.,Colon-Casasnovas,N.E.,Deorukhkar,
A., Shentu, S.,Kuno,N., et al. (2008). Imaging epidermal growth factor recep-
torexpression invivo: pharmacokineticandbiodistributioncharacterizationof
a bioconjugated quantumdot nanoprobe.Clin. Cancer Res. 14, 731–741. doi:
10.1158/1078-0432.CCR-07-1958
Dobson, J. (2006). Gene therapy progress and prospects:magnetic nanoparticle-
basedgenedelivery.GeneTher.13,283–287.doi:10.1038/sj.gt.3302720
Donega, C. D. (2011). Synthesis and properties of colloidal heteronanocrystals.
Chem.Soc.Rev.40,1512–1546.doi:10.1039/c0cs00055h
Dong,C.M.(2011).Glyconanoparticles forbiomedicalapplications.Comb.Chem.
HighThroughputScreen.14,173–181.doi:10.2174/138620711794728716
Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assuncao, M., et al.
(2012). Noblemetal nanoparticles for biosensing applications. Sensors(Basel)
12,1657–1687.doi:10.3390/s120201657
Doria, G., Larguinho,M., Dias, J. T., Pereira, E., Franco, R., and Baptista, P. V.
(2010). Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection.
Nanotechnology21:255101.doi:10.1088/0957-4484/21/25/255101
Dreaden,E.C.,Alkilany,A.M.,Huang,X.H.,Murphy,C. J., andEl-Sayed,M.A.
(2012).Thegoldenage:goldnanoparticles forbiomedicine.Chem.Soc.Rev.41,
2740–2779.doi:10.1039/c1cs15237h
Dubertret,B. (2005).Quantumdots-DNAdetectives.Nat.Mater.4,797–798.doi:
10.1038/nmat1520
Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and
Libchaber, A. (2002). In vivo imaging of quantumdots encapsulated in phos-
pholipidmicelles.Science298,1759–1762.doi:10.1126/science.1077194
East,D.A.,Mulvihill, D. P., Todd,M., andBruce, I. J. (2011).QD-antibody con-
jugates via carbodiimide-mediated coupling: a detailed study of the variables
involved and apossible newmechanism for the coupling reactionunder basic
aqueousconditions.Langmuir27,13888–13896.doi:10.1021/la203273p
Edwards, P. P., and Thomas, J.M. (2007). Gold in ametallic divided state–from
Faradaytopresent-daynanoscience.Angew.Chem.Int.Ed.Engl.46,5480–5486.
doi:10.1002/anie.200700428
El-Boubbou,K., andHuang,X. (2011).Glyco-nanomaterials: translating insights
from the “sugar-code” to biomedical applications. Curr. Med. Chem. 18,
2060–2078.doi:10.2174/092986711795656144
El-Boubbou, K., Zhu,D. C., Vasileiou, C., Borhan, B., Prosperi, D., Li,W., et al.
(2010).Magneticglyco-nanoparticles: a tool todetect,differentiate, andunlock
the glyco-codes of cancer viamagnetic resonance imaging. J. Am. Chem. Soc.
132,4490–4499.doi:10.1021/ja100455c
El-Sayed, M. A. (2001). Some interesting properties of metals confined in time
and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264. doi:
10.1021/ar960016n
Elbakry,A.,Zaky,A.,Liebkl,R.,Rachel,R.,Goepferich,A.,andBreunig,M.(2009).
Layer-by-layer assembled gold nanoparticles for siRNAdelivery.Nano Lett. 9,
2059–2064.doi:10.1021/nl9003865
Fang, C., and Zhang, M. Q. (2009). Multifunctional magnetic nanoparti-
cles for medical imaging applications. J. Mater. Chem. 19, 6258–6266. doi:
10.1039/b902182e
Faraday, M. (1857). Experimental relations of gold (and other metals) to light.
Philos.Trans.R.Soc.Lond. 147,145–181.doi:10.1098/rstl.1857.0011
Feng,C. L.,Dou,X.Q., Liu,Q. L., Zhang,W.,Gu, J. J., Zhu, S.M., et al. (2013).
Dual-specific interaction todetectDNAongoldnanoparticles.Sensors (Basel)
13,5749–5756.doi:10.3390/s130505749
Fichou,Y., andFerec,C. (2006).Thepotential of oligonucleotides for therapeutic
applications.TrendsBiotechnol.24,563–570.doi:10.1016/j.tibtech.2006.10.003
Fleming, D. A., Thode, C. J., andWilliams,M. E. (2006). Triazole cycloaddition
as a general route for functionalization ofAunanoparticles.Chem.Mater. 18,
2327–2334.doi:10.1021/cm060157b
Foy, S. P., Manthe, R. L., Foy, S. T., Dimitrijevic, S., Krishnamurthy, N., and
Labhasetwar, V. (2010). Optical imaging and magnetic field targeting of
magnetic nanoparticles in tumors. ACS Nano 4, 5217–5224. doi: 10.1021/
nn101427t
www.frontiersin.org July2014 |Volume2 |Article48 | 28
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie