Page - 28 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 28 -
Text of the Page - 28 -
Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles
Conde, J., Larguinho, M., Cordeiro, A., Raposo, L. R., Costa, P. M., Santos, S.,
et al. (2014b).Gold-nanobeacons for gene therapy: evaluationof genotoxicity,
cell toxicity and proteome profiling analysis.Nanotoxicology 8, 521β532. doi:
10.3109/17435390.2013.802821
Conde, J., Rosa, J., and Baptista, P. (2013a). Gold-nanobeacons as a theranostic
system for thedetection and inhibitionof specific genes.Protoc. Exch.doi: 10.
1038/protex.2013.088
Conde,J.,Rosa,J.,delaFuente, J.M.,andBaptist,P.V.(2013b).Gold-nanobeacons
for simultaneous gene specific silencing and intracellular tracking of the
silencing events.Biomaterials 34, 2516β2523. doi: 10.1016/j.biomaterials.2012.
12.015
Conde, J., Rosa, J., Lima, J. C., and Baptista, P. V. (2012d). Nanophotonics for
moleculardiagnostics and therapyapplications. Int. J. Photoenergy2012, 1β11.
doi:10.1155/2012/619530
Conde, J., Tian, F., Hernandez, Y., Bao, C., Cui, D., Janssen, K. P., et al. (2013c).
In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA cou-
pled to inflammatory response in lung cancermousemodels.Biomaterials34,
7744β7753.doi:10.1016/j.biomaterials.2013.06.041
Cronan, J.E. (1990).Biotinationofproteins invivo -aposttranslationalmodifica-
tionto label,purify, andstudyproteins. J.Biol.Chem.265,10327β10333.
Crut,A.,Geron-Landre,B., Bonnet, I., Bonneau, S.,Desbiolles, P., andEscude,C.
(2005). Detection of single DNAmolecules bymulticolor quantum-dot end-
labeling.NucleicAcidsRes.33:e98.doi:10.1093/nar/gni097
Cull,M.G., andSchatz, P. J. (2000). Biotinylationof proteins in vivo and in vitro
using small peptide tags.MethodsEnzymol.326, 430β440. doi: 10.1016/S0076-
6879(00)26068-0
Curnis,F.,Sacchi,A.,Gasparri,A.,Longhi,R.,Bachi,A.,Doglioni,C.,etal. (2008).
Isoaspartate-glycine-arginine: anewtumorvasculature-targetingmotif.Cancer
Res.68,7073β7082.doi:10.1158/0008-5472.CAN-08-1272
Daou, T. J., Li, L., Reiss, P., Josserand, V., and Texier, I. (2009). Effect of
poly(ethylene glycol) length on the in vivo behavior of coated quantumdots.
Langmuir25,3040β3044.doi:10.1021/la8035083
de laFuente, J.M.,Alcantara,D.,Eaton,P.,Crespo,P.,Rojas,T.C., Fernandez,A.,
et al. (2006).Goldandgold-ironoxidemagnetic glyconanoparticles: synthesis,
characterization andmagnetic properties. J. Phys. Chem.B 110, 13021β13028.
doi:10.1021/jp062522s
de la Fuente, J.M., Barrientos,A.G., Rojas, T.C., Rojo, J., Canada, J., Fernandez,
A., et al. (2001).Goldglyconanoparticles aswater-solublepolyvalentmodels to
studycarbohydrateinteractions.Angew.Chem.Int.Ed.Engl.40,2257β2261.doi:
10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S
de la Fuente, J.M., and Berry, C. C. (2005). Tat peptide as an efficientmolecule
to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16,
1176β1180.doi:10.1021/bc050033+
de la Fuente, J. M., Eaton, P., Barrientos, A. G., Menendez, M., and Penades,
S. (2005). Thermodynamic evidence for Ca2+-mediated self-aggregation
of Lewis X gold glyconanoparticles. A model for cell adhesion via
carbohydrate-carbohydrate interaction. J.Am.Chem.Soc.127,6192β6197.doi:
10.1021/ja0431354
de la Fuente, J. M., and Penades, S. (2004). Understanding carbohydrate-
carbohydrate interactions bymeans of glyconanotechnology.Glycoconj. J. 21,
149β163.doi:10.1023/B:GLYC.0000044846.80014.cb
de la Fuente, J. M., and Penades, S. (2006). Glyconanoparticles: types, synthesis
and applications in glycoscience, biomedicine andmaterial science. Biochim.
Biophys.Acta1760,636β651.doi:10.1016/j.bbagen.2005.12.001
De, M., Miranda, O. R., Rana, S., and Rotello, V. M. (2009). Size and geome-
trydependentprotein-nanoparticle self-assembly.Chem.Commun.2157β2159.
doi:10.1039/b900552h
Demers, L.M.,Mirkin, C. A.,Mucic, R. C., Reynolds, R. A. III., Letsinger, R. L.,
Elghanian,R., et al. (2000).Afluorescence-basedmethod for determining the
surface coverage andhybridization efficiency of thiol-capped oligonucleotides
bound to gold thin films and nanoparticles.Anal. Chem. 72, 5535β5541. doi:
10.1021/ac0006627
Deng, Z. J., Liang, M., Monteiro, M., Toth, I., and Minchin, R. F. (2011).
Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 recep-
tor activation and inflammation. Nat. Nanotechnol. 6, 39β44. doi:
10.1038/nnano.2010.250
Derfus, A.M., Chen, A. A.,Min, D.H., Ruoslahti, E., and Bhatia, S. N. (2007).
Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem. 18,
1391β1396.doi:10.1021/bc060367e Devaraj,N.K., Keliher, E. J., Thurber,G.M.,Nahrendorf,M., andWeissleder, R.
(2009).18Flabelednanoparticlesfor invivoPET-CTImaging.Bioconjug.Chem.
20,397β401.doi:10.1021/bc8004649
Dhar, S., Daniel, W. L., Giljohann, D. A., Mirkin, C. A., and Lippard, S. J.
(2009). Polyvalent oligonucleotide gold nanoparticle conjugates as delivery
vehicles for platinum(IV)warheads. J. Am.Chem. Soc.131, 14652β14653. doi:
10.1021/ja9071282
Diagaradjane,P.,Orenstein-Cardona, J.M.,Colon-Casasnovas,N.E.,Deorukhkar,
A., Shentu, S.,Kuno,N., et al. (2008). Imaging epidermal growth factor recep-
torexpression invivo: pharmacokineticandbiodistributioncharacterizationof
a bioconjugated quantumdot nanoprobe.Clin. Cancer Res. 14, 731β741. doi:
10.1158/1078-0432.CCR-07-1958
Dobson, J. (2006). Gene therapy progress and prospects:magnetic nanoparticle-
basedgenedelivery.GeneTher.13,283β287.doi:10.1038/sj.gt.3302720
Donega, C. D. (2011). Synthesis and properties of colloidal heteronanocrystals.
Chem.Soc.Rev.40,1512β1546.doi:10.1039/c0cs00055h
Dong,C.M.(2011).Glyconanoparticles forbiomedicalapplications.Comb.Chem.
HighThroughputScreen.14,173β181.doi:10.2174/138620711794728716
Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assuncao, M., et al.
(2012). Noblemetal nanoparticles for biosensing applications. Sensors(Basel)
12,1657β1687.doi:10.3390/s120201657
Doria, G., Larguinho,M., Dias, J. T., Pereira, E., Franco, R., and Baptista, P. V.
(2010). Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection.
Nanotechnology21:255101.doi:10.1088/0957-4484/21/25/255101
Dreaden,E.C.,Alkilany,A.M.,Huang,X.H.,Murphy,C. J., andEl-Sayed,M.A.
(2012).Thegoldenage:goldnanoparticles forbiomedicine.Chem.Soc.Rev.41,
2740β2779.doi:10.1039/c1cs15237h
Dubertret,B. (2005).Quantumdots-DNAdetectives.Nat.Mater.4,797β798.doi:
10.1038/nmat1520
Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and
Libchaber, A. (2002). In vivo imaging of quantumdots encapsulated in phos-
pholipidmicelles.Science298,1759β1762.doi:10.1126/science.1077194
East,D.A.,Mulvihill, D. P., Todd,M., andBruce, I. J. (2011).QD-antibody con-
jugates via carbodiimide-mediated coupling: a detailed study of the variables
involved and apossible newmechanism for the coupling reactionunder basic
aqueousconditions.Langmuir27,13888β13896.doi:10.1021/la203273p
Edwards, P. P., and Thomas, J.M. (2007). Gold in ametallic divided stateβfrom
Faradaytopresent-daynanoscience.Angew.Chem.Int.Ed.Engl.46,5480β5486.
doi:10.1002/anie.200700428
El-Boubbou,K., andHuang,X. (2011).Glyco-nanomaterials: translating insights
from the βsugar-codeβ to biomedical applications. Curr. Med. Chem. 18,
2060β2078.doi:10.2174/092986711795656144
El-Boubbou, K., Zhu,D. C., Vasileiou, C., Borhan, B., Prosperi, D., Li,W., et al.
(2010).Magneticglyco-nanoparticles: a tool todetect,differentiate, andunlock
the glyco-codes of cancer viamagnetic resonance imaging. J. Am. Chem. Soc.
132,4490β4499.doi:10.1021/ja100455c
El-Sayed, M. A. (2001). Some interesting properties of metals confined in time
and nanometer space of different shapes. Acc. Chem. Res. 34, 257β264. doi:
10.1021/ar960016n
Elbakry,A.,Zaky,A.,Liebkl,R.,Rachel,R.,Goepferich,A.,andBreunig,M.(2009).
Layer-by-layer assembled gold nanoparticles for siRNAdelivery.Nano Lett. 9,
2059β2064.doi:10.1021/nl9003865
Fang, C., and Zhang, M. Q. (2009). Multifunctional magnetic nanoparti-
cles for medical imaging applications. J. Mater. Chem. 19, 6258β6266. doi:
10.1039/b902182e
Faraday, M. (1857). Experimental relations of gold (and other metals) to light.
Philos.Trans.R.Soc.Lond. 147,145β181.doi:10.1098/rstl.1857.0011
Feng,C. L.,Dou,X.Q., Liu,Q. L., Zhang,W.,Gu, J. J., Zhu, S.M., et al. (2013).
Dual-specific interaction todetectDNAongoldnanoparticles.Sensors (Basel)
13,5749β5756.doi:10.3390/s130505749
Fichou,Y., andFerec,C. (2006).Thepotential of oligonucleotides for therapeutic
applications.TrendsBiotechnol.24,563β570.doi:10.1016/j.tibtech.2006.10.003
Fleming, D. A., Thode, C. J., andWilliams,M. E. (2006). Triazole cycloaddition
as a general route for functionalization ofAunanoparticles.Chem.Mater. 18,
2327β2334.doi:10.1021/cm060157b
Foy, S. P., Manthe, R. L., Foy, S. T., Dimitrijevic, S., Krishnamurthy, N., and
Labhasetwar, V. (2010). Optical imaging and magnetic field targeting of
magnetic nanoparticles in tumors. ACS Nano 4, 5217β5224. doi: 10.1021/
nn101427t
www.frontiersin.org July2014 |Volume2 |Article48 | 28
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoΓ£o Conde
- Pedro Viana Baptista
- JesΓΊs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie