Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 30 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 30 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 30 -

Bild der Seite - 30 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 30 -

Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles Jordan, A., Wust, P., Fahling, H., John, W., Hinz, A., and Felix, R. (1993). Inductive heating of ferrimagnetic particles and magnetic fluids - physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 9, 51–68. doi:10.3109/02656739309061478 Jun,Y.W.,Seo, J.W.,andCheon, J. (2008).Nanoscaling lawsofmagneticnanopar- ticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189.doi:10.1021/ar700121f Jung, Y., Jeong, J. Y., and Chung, B. H. (2008). Recent advances in immobi- lizationmethods of antibodies on solid supports.Analyst 133, 697–701. doi: 10.1039/b800014j Kanaras, A. G., Kamounah, F. S., Schaumburg, K., Kiely, C. J., and Brust, M. (2002). Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters.Chem.Commun. (Camb.) 2294–2295. doi: 10.1039/b207838b Kang,K.A.,Wang,J., Jasinski,J.B.,andAchilefu,S.(2011).Fluorescencemanipula- tionbygoldnanoparticles: fromcompletequenchingtoextensiveenhancement. J.Nanobiotechnol.9:16.doi:10.1186/1477-3155-9-16 Khoshnevisan, K., Bordbar, A. K., Zare, D., Davoodi, D., Noruzi, M., Barkhi, M., et al. (2011). Immobilization of cellulase enzyme on superparamagnetic nanoparticles anddeterminationof its activity and stability.Chem.Eng. J.171, 669–673.doi:10.1016/j.cej.2011.04.039 Kievit, F.M., Veiseh,O., Fang, C., Bhattarai,N., Lee,D., Ellenbogen, R.G., et al. (2010).Chlorotoxin labeledmagneticnanovectors for targetedgenedelivery to glioma.ACSNano4,4587–4594.doi:10.1021/nn1008512 Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., and Seeberger, P.H. (2009). Invitro imagingand in vivo liver targetingwithcarbohydrate cappedquantum dots. J.Am.Chem.Soc.131,2110–2112.doi:10.1021/ja807711w Kim,C. K., Ghosh, P., Pagliuca, C., Zhu, Z. J.,Menichetti, S., andRotello, V.M. (2009). Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360–1361. doi: 10.1021/ja808137c Kim, K. Y. (2007). Nanotechnology platforms and physiological challenges for cancer therapeutics.Nanomedicine 3, 103–110. doi: 10.1016/j.nano.2006. 12.002 Kim, Y. P., Daniel, W. L., Xia, Z., Xie, H., Mirkin, C. A., and Rao, J. (2010). Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chem. Commun. (Camb.) 46, 76–78. doi: 10.1039/b915612g Koole,R.,vanSchooneveld,M.M.,Hilhorst, J.,deMelloDonegá,C., ’tHart,D.C., vanBlaaderen,A.,etal. (2008).Onthe incorporationmechanismofhydropho- bic quantumdots in silica spheres by a reversemicroemulsionmethod.Chem. Mater.20,2503–2512.doi:10.1021/cm703348y Kommareddy,S.,Tiwari,S.,andAmiji,M.M.(2005).Long-circulatingnanovectors for tumor-specificgenedelivery.Technol.Cancer.Res.Treat.4,615–626. Kreibig, U., and Vollmer,M. (1995).Optical Properties ofMetal Clusters. Berlin; Heidelberg:Springer.doi:10.1007/978-3-662-09109-8 Kuhn,S. J.,Finch,S.K.,Hallahan,D.E., andGiorgio,T.D.(2006).Proteolytic sur- facefunctionalizationenhances invitromagneticnanoparticlemobilitythrough extracellularmatrix.NanoLett.6,306–312.doi:10.1021/nl052241g Kumar,M.,Yigit,M.,Dai,G.,Moore,A., andMedarova,Z. (2010). Image-guided breast tumor therapyusing a small interferingRNAnanodrug.CancerRes.70, 7553–7561.doi:10.1158/0008-5472.CAN-10-2070 Kuo,H.T.,Yeh, J.Z., Jiang,C.M.,andWu,M.C. (2012).Magneticparticle-linked anti hCG B antibody for immunoassay of human chorionic gonadotropin (hCG),potential applicationtoearlypregnancydiagnosis. J. Immunol.Methods 381,32–40.doi:10.1016/j.jim.2012.04.006 Lacerda, S.H., Park, J. J.,Meuse,C., Pristinski,D., Becker,M.L.,Karim,A., et al. (2010). Interactionofgoldnanoparticleswithcommonhumanbloodproteins. ACSNano4,365–379.doi:10.1021/nn9011187 Lai,S. J., andGuan,X.L.(2011).Surfacemodificationandapplicationofquantum dotsbasedonpolymers.ProgressChem.23,941–950. Lammers, T., Aime, S., Hennink, W. E., Storm, G., and Kiessling, F. (2011). Theranostic nanomedicine. Acc. Chem. Res. 44, 1029–1038. doi: 10.1021/ar200019c Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory’s experience.Acc.Chem.Res.33,94–101.doi:10.1021/ar9800993 Laurent, S., Dutz, S., Hafeli, U. O., andMahmoudi, M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid InterfaceSci.166,8–23.doi:10.1016/j.cis.2011.04.003 Lavilla,M.,Moros,M.,Puertas,S.,Grazú,V.,Pérez,M.D.,Calvo,M., etal. (2012). Specificpeptidesasalternativetoantibodyligandsforbiomagneticseparationof Clostridium tyrobutyricumspores.Anal. Bioanal. Chem.402, 3219–3226. doi: 10.1007/s00216-011-5621-z Le,D.C.,Wang,C., andWang,Q. (2010). Fluorogenic click reaction.Chem. Soc. Rev.39,1233–1239.doi:10.1039/b901975h Lee, H., Sun, E., Ham, D., and Weissleder, R. (2008). Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874. doi: 10.1038/nm.1711 Lee,H.,Yoon,T. J.,Figueiredo, J.L.,Swirski,F.K.,andWeissleder,R.(2009).Rapid detectionandprofilingof cancer cells infine-needleaspirates.Proc.Natl.Acad. Sci.U.S.A.106,12459–12464.doi:10.1073/pnas.0902365106 Lee, J.H.,Huh,Y.M., Jun, Y.W., Seo, J.W., Jang, J. T., Song,H.T., et al. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging.Nat.Med.13,95–99.doi:10.1038/nm1467 Lee, J. S. (2011).Multiplexeddetectionofoligonucleotideswithbiobarcodedgold nanoparticleprobes.MethodsMol.Biol.726,17–31.doi: 10.1007/978-1-61779- 052-2_2 Lee, M., and Kim, S.W. (2005). Polyethylene glycol-conjugated copolymers for plasmidDNAdelivery.Pharm.Res.22,1–10.doi:10.1007/s11095-004-9003-5 Levy,R.,Thanh,N.T.,Doty,R.C.,Hussain, I.,Nichols,R. J., Schiffrin,D. J., et al. (2004).Rational and combinatorial designof peptide capping ligands for gold nanoparticles. J.Am.Chem.Soc.126,10076–10084.doi:10.1021/ja0487269 Li,D.,Li,G.P.,Guo,W.W.,Li,P.C.,Wang,E.K.,andWang,J.(2008).Glutathione- mediated releaseof functionalplasmidDNAfrompositively chargedquantum dots.Biomaterials29,2776–2782.doi:10.1016/j.biomaterials.2008.03.007 Li, J.M.,Wang, Y. Y., Zhao,M. X., Tan, C. P., Li, Y. Q., Le, X. Y., et al. (2012). MultifunctionalQD-basedco-deliveryof siRNAanddoxorubicin toHeLacells for reversal of multidrug resistance and real-time tracking. Biomaterials 33, 2780–2790.doi:10.1016/j.biomaterials.2011.12.035 Li, J. M., Zhao, M. X., Su, H., Wang, Y. Y., Tan, C. P., Ji, L. N., et al. (2011). Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 32, 7978–7987. doi: 10.1016/j.biomaterials.2011.07.011 Li, L., Daou, T. J., Texier, I., Tran, T. K. C., Nguyen, Q. L., and Reiss, P. (2009). Highly Luminescent CuInS2/ZnSCore/Shell Nanocrystals: cadmium- free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429. doi: 10.1021/cm900103b Li, S. D., and Huang, L. (2010). Stealth nanoparticles: high density but shed- dable PEG is a key for tumor targeting. J. Control. Release 145, 178–181. doi: 10.1016/j.jconrel.2010.03.016 Li,W.,Nicol, F., and Szoka, J. (2004).GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.Adv. Drug. Deliv.Rev.56,967–985.doi:10.1016/j.addr.2003.10.041 Lin,C.A., Sperling,R.A., Li, J. K., Yang,T.Y., Li, P. Y., Zanella,M., et al. (2008). Designof an amphiphilic polymer fornanoparticle coating and functionaliza- tion.Small4,334–341.doi:10.1002/smll.200700654 Lin, Z. Y., Gao, S., Lin, J., Lin,W. L., Qiu, S. Y., Guo, L.H., et al. (2012). Visual detectionofcopper(II)basedontheaggregationofgoldnano-particlesviaclick chemistry.Anal.Methods4,612–615.doi:10.1039/c2ay05765d Ling, Y., Wei, K., Luo, Y., Gao, X., and Zhong, S. (2011). Dual doc- etaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy.Biomaterials 32, 7139–7150. doi:10.1016/j.biomaterials.2011.05.089 Liu, C., Zou, B., Rondinone, A. J., and Zhang, Z. J. (2000). Reverse micelle synthesis and characterization of superparamagneticMnFe2O4 spinel ferrite nanocrystallites. J.Phys.Chem.B104,1141–1145.doi:10.1021/jp993552g Liu, F. J., Laurent, S., Fattahi, H., Elst, L. V., and Muller, R. N. (2011). Superparamagneticnanosystemsbasedonironoxidenanoparticlesforbiomed- ical imaging.Nanomedicine6,519–528.doi:10.2217/nnm.11.16 Liu,J.A.,Lau,S.K.,Varma,V.A.,Kairdolf,B.A.,andNie,S.M.(2010).Multiplexed detectionandcharacterizationofrare tumorcells inHodgkin’s lymphomawith multicolorquantumdots.Anal.Chem.82,6237–6243.doi:10.1021/ac101065b Liu, Y., Shipton,M. K., Ryan, J., Kaufman, E. D., Franzen, S., and Feldheim, D. L. (2007). Synthesis, stability, andcellular internalizationof goldnanoparticles containingmixed peptide-poly(ethylene glycol) monolayers.Anal. Chem. 79, 2221–2229.doi:10.1021/ac061578f Liu, Y. D., Han, X. G., He, L., and Yin, Y. D. (2012). Thermoresponsive assem- bly of charged gold nanoparticles and their reversible tuning of plasmon www.frontiersin.org July2014 |Volume2 |Article48 | 30
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics