Page - 30 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 30 -
Text of the Page - 30 -
Condeetal. Biofunctionalizationandsurfacechemistryof inorganicnanoparticles
Jordan, A., Wust, P., Fahling, H., John, W., Hinz, A., and Felix, R. (1993).
Inductive heating of ferrimagnetic particles and magnetic fluids - physical
evaluation of their potential for hyperthermia. Int. J. Hyperthermia 9, 51–68.
doi:10.3109/02656739309061478
Jun,Y.W.,Seo, J.W.,andCheon, J. (2008).Nanoscaling lawsofmagneticnanopar-
ticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41,
179–189.doi:10.1021/ar700121f
Jung, Y., Jeong, J. Y., and Chung, B. H. (2008). Recent advances in immobi-
lizationmethods of antibodies on solid supports.Analyst 133, 697–701. doi:
10.1039/b800014j
Kanaras, A. G., Kamounah, F. S., Schaumburg, K., Kiely, C. J., and Brust, M.
(2002). Thioalkylated tetraethylene glycol: a new ligand for water soluble
monolayer protected gold clusters.Chem.Commun. (Camb.) 2294–2295. doi:
10.1039/b207838b
Kang,K.A.,Wang,J., Jasinski,J.B.,andAchilefu,S.(2011).Fluorescencemanipula-
tionbygoldnanoparticles: fromcompletequenchingtoextensiveenhancement.
J.Nanobiotechnol.9:16.doi:10.1186/1477-3155-9-16
Khoshnevisan, K., Bordbar, A. K., Zare, D., Davoodi, D., Noruzi, M., Barkhi,
M., et al. (2011). Immobilization of cellulase enzyme on superparamagnetic
nanoparticles anddeterminationof its activity and stability.Chem.Eng. J.171,
669–673.doi:10.1016/j.cej.2011.04.039
Kievit, F.M., Veiseh,O., Fang, C., Bhattarai,N., Lee,D., Ellenbogen, R.G., et al.
(2010).Chlorotoxin labeledmagneticnanovectors for targetedgenedelivery to
glioma.ACSNano4,4587–4594.doi:10.1021/nn1008512
Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., and Seeberger, P.H. (2009).
Invitro imagingand in vivo liver targetingwithcarbohydrate cappedquantum
dots. J.Am.Chem.Soc.131,2110–2112.doi:10.1021/ja807711w
Kim,C. K., Ghosh, P., Pagliuca, C., Zhu, Z. J.,Menichetti, S., andRotello, V.M.
(2009). Entrapment of hydrophobic drugs in nanoparticle monolayers with
efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360–1361. doi:
10.1021/ja808137c
Kim, K. Y. (2007). Nanotechnology platforms and physiological challenges
for cancer therapeutics.Nanomedicine 3, 103–110. doi: 10.1016/j.nano.2006.
12.002
Kim, Y. P., Daniel, W. L., Xia, Z., Xie, H., Mirkin, C. A., and Rao, J.
(2010). Bioluminescent nanosensors for protease detection based upon gold
nanoparticle-luciferase conjugates. Chem. Commun. (Camb.) 46, 76–78. doi:
10.1039/b915612g
Koole,R.,vanSchooneveld,M.M.,Hilhorst, J.,deMelloDonegá,C., ’tHart,D.C.,
vanBlaaderen,A.,etal. (2008).Onthe incorporationmechanismofhydropho-
bic quantumdots in silica spheres by a reversemicroemulsionmethod.Chem.
Mater.20,2503–2512.doi:10.1021/cm703348y
Kommareddy,S.,Tiwari,S.,andAmiji,M.M.(2005).Long-circulatingnanovectors
for tumor-specificgenedelivery.Technol.Cancer.Res.Treat.4,615–626.
Kreibig, U., and Vollmer,M. (1995).Optical Properties ofMetal Clusters. Berlin;
Heidelberg:Springer.doi:10.1007/978-3-662-09109-8
Kuhn,S. J.,Finch,S.K.,Hallahan,D.E., andGiorgio,T.D.(2006).Proteolytic sur-
facefunctionalizationenhances invitromagneticnanoparticlemobilitythrough
extracellularmatrix.NanoLett.6,306–312.doi:10.1021/nl052241g
Kumar,M.,Yigit,M.,Dai,G.,Moore,A., andMedarova,Z. (2010). Image-guided
breast tumor therapyusing a small interferingRNAnanodrug.CancerRes.70,
7553–7561.doi:10.1158/0008-5472.CAN-10-2070
Kuo,H.T.,Yeh, J.Z., Jiang,C.M.,andWu,M.C. (2012).Magneticparticle-linked
anti hCG B antibody for immunoassay of human chorionic gonadotropin
(hCG),potential applicationtoearlypregnancydiagnosis. J. Immunol.Methods
381,32–40.doi:10.1016/j.jim.2012.04.006
Lacerda, S.H., Park, J. J.,Meuse,C., Pristinski,D., Becker,M.L.,Karim,A., et al.
(2010). Interactionofgoldnanoparticleswithcommonhumanbloodproteins.
ACSNano4,365–379.doi:10.1021/nn9011187
Lai,S. J., andGuan,X.L.(2011).Surfacemodificationandapplicationofquantum
dotsbasedonpolymers.ProgressChem.23,941–950.
Lammers, T., Aime, S., Hennink, W. E., Storm, G., and Kiessling, F.
(2011). Theranostic nanomedicine. Acc. Chem. Res. 44, 1029–1038. doi:
10.1021/ar200019c
Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one
laboratory’s experience.Acc.Chem.Res.33,94–101.doi:10.1021/ar9800993
Laurent, S., Dutz, S., Hafeli, U. O., andMahmoudi, M. (2011). Magnetic fluid
hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv.
Colloid InterfaceSci.166,8–23.doi:10.1016/j.cis.2011.04.003 Lavilla,M.,Moros,M.,Puertas,S.,Grazú,V.,Pérez,M.D.,Calvo,M., etal. (2012).
Specificpeptidesasalternativetoantibodyligandsforbiomagneticseparationof
Clostridium tyrobutyricumspores.Anal. Bioanal. Chem.402, 3219–3226. doi:
10.1007/s00216-011-5621-z
Le,D.C.,Wang,C., andWang,Q. (2010). Fluorogenic click reaction.Chem. Soc.
Rev.39,1233–1239.doi:10.1039/b901975h
Lee, H., Sun, E., Ham, D., and Weissleder, R. (2008). Chip-NMR biosensor
for detection and molecular analysis of cells. Nat. Med. 14, 869–874. doi:
10.1038/nm.1711
Lee,H.,Yoon,T. J.,Figueiredo, J.L.,Swirski,F.K.,andWeissleder,R.(2009).Rapid
detectionandprofilingof cancer cells infine-needleaspirates.Proc.Natl.Acad.
Sci.U.S.A.106,12459–12464.doi:10.1073/pnas.0902365106
Lee, J.H.,Huh,Y.M., Jun, Y.W., Seo, J.W., Jang, J. T., Song,H.T., et al. (2007).
Artificially engineered magnetic nanoparticles for ultra-sensitive molecular
imaging.Nat.Med.13,95–99.doi:10.1038/nm1467
Lee, J. S. (2011).Multiplexeddetectionofoligonucleotideswithbiobarcodedgold
nanoparticleprobes.MethodsMol.Biol.726,17–31.doi: 10.1007/978-1-61779-
052-2_2
Lee, M., and Kim, S.W. (2005). Polyethylene glycol-conjugated copolymers for
plasmidDNAdelivery.Pharm.Res.22,1–10.doi:10.1007/s11095-004-9003-5
Levy,R.,Thanh,N.T.,Doty,R.C.,Hussain, I.,Nichols,R. J., Schiffrin,D. J., et al.
(2004).Rational and combinatorial designof peptide capping ligands for gold
nanoparticles. J.Am.Chem.Soc.126,10076–10084.doi:10.1021/ja0487269
Li,D.,Li,G.P.,Guo,W.W.,Li,P.C.,Wang,E.K.,andWang,J.(2008).Glutathione-
mediated releaseof functionalplasmidDNAfrompositively chargedquantum
dots.Biomaterials29,2776–2782.doi:10.1016/j.biomaterials.2008.03.007
Li, J.M.,Wang, Y. Y., Zhao,M. X., Tan, C. P., Li, Y. Q., Le, X. Y., et al. (2012).
MultifunctionalQD-basedco-deliveryof siRNAanddoxorubicin toHeLacells
for reversal of multidrug resistance and real-time tracking. Biomaterials 33,
2780–2790.doi:10.1016/j.biomaterials.2011.12.035
Li, J. M., Zhao, M. X., Su, H., Wang, Y. Y., Tan, C. P., Ji, L. N., et al.
(2011). Multifunctional quantum-dot-based siRNA delivery for HPV18 E6
gene silence and intracellular imaging. Biomaterials 32, 7978–7987. doi:
10.1016/j.biomaterials.2011.07.011
Li, L., Daou, T. J., Texier, I., Tran, T. K. C., Nguyen, Q. L., and Reiss, P.
(2009). Highly Luminescent CuInS2/ZnSCore/Shell Nanocrystals: cadmium-
free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429. doi:
10.1021/cm900103b
Li, S. D., and Huang, L. (2010). Stealth nanoparticles: high density but shed-
dable PEG is a key for tumor targeting. J. Control. Release 145, 178–181. doi:
10.1016/j.jconrel.2010.03.016
Li,W.,Nicol, F., and Szoka, J. (2004).GALA: a designed synthetic pH-responsive
amphipathic peptide with applications in drug and gene delivery.Adv. Drug.
Deliv.Rev.56,967–985.doi:10.1016/j.addr.2003.10.041
Lin,C.A., Sperling,R.A., Li, J. K., Yang,T.Y., Li, P. Y., Zanella,M., et al. (2008).
Designof an amphiphilic polymer fornanoparticle coating and functionaliza-
tion.Small4,334–341.doi:10.1002/smll.200700654
Lin, Z. Y., Gao, S., Lin, J., Lin,W. L., Qiu, S. Y., Guo, L.H., et al. (2012). Visual
detectionofcopper(II)basedontheaggregationofgoldnano-particlesviaclick
chemistry.Anal.Methods4,612–615.doi:10.1039/c2ay05765d
Ling, Y., Wei, K., Luo, Y., Gao, X., and Zhong, S. (2011). Dual doc-
etaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting
magnetic resonance imaging and cancer therapy.Biomaterials 32, 7139–7150.
doi:10.1016/j.biomaterials.2011.05.089
Liu, C., Zou, B., Rondinone, A. J., and Zhang, Z. J. (2000). Reverse micelle
synthesis and characterization of superparamagneticMnFe2O4 spinel ferrite
nanocrystallites. J.Phys.Chem.B104,1141–1145.doi:10.1021/jp993552g
Liu, F. J., Laurent, S., Fattahi, H., Elst, L. V., and Muller, R. N. (2011).
Superparamagneticnanosystemsbasedonironoxidenanoparticlesforbiomed-
ical imaging.Nanomedicine6,519–528.doi:10.2217/nnm.11.16
Liu,J.A.,Lau,S.K.,Varma,V.A.,Kairdolf,B.A.,andNie,S.M.(2010).Multiplexed
detectionandcharacterizationofrare tumorcells inHodgkin’s lymphomawith
multicolorquantumdots.Anal.Chem.82,6237–6243.doi:10.1021/ac101065b
Liu, Y., Shipton,M. K., Ryan, J., Kaufman, E. D., Franzen, S., and Feldheim, D.
L. (2007). Synthesis, stability, andcellular internalizationof goldnanoparticles
containingmixed peptide-poly(ethylene glycol) monolayers.Anal. Chem. 79,
2221–2229.doi:10.1021/ac061578f
Liu, Y. D., Han, X. G., He, L., and Yin, Y. D. (2012). Thermoresponsive assem-
bly of charged gold nanoparticles and their reversible tuning of plasmon
www.frontiersin.org July2014 |Volume2 |Article48 | 30
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie