Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 58 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 58 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 58 -

Bild der Seite - 58 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 58 -

Cooperet al. Nanoparticles for radiation therapy El-Sayed, I. H., Huang, X., and El-Sayed, M. A. (2006). Selective laser photo- thermal therapyof epithelial carcinomausing anti-EGFRantibody conjugated goldnanoparticles.CancerLett.239,129–135.doi:10.1016/j.canlet.2005.07.035 Geng,F., Song,K.,Xing, J.Z.,Yuan,C.Z.,Yan, S.,Yang,Q.F., et al. (2011).Thio- glucoseboundgoldnanoparticles enhance radio-cytotoxic targetingofovarian cancer.Nanotechnology22:285101.doi:10.1088/0957-4484/22/28/285101 Giustini, A. J., Petryk,A.A., andHoopes, P. J. (2011).Comparisonofmicrowave andmagnetic nanoparticle hyperthermia radiosensitization inmurine breast tumors.Proc.SPIE7901.doi:10.1117/12.876515 Gobin, A.M., Lee, M. H., Halas, N. J., James,W. D., Drezek, R. A., andWest, J. L. (2007). Near-infrared resonant nanoshells for combined optical imaging andphotothermal cancer therapy.Nano Lett. 7, 1929–1934. doi: 10.1021/nl07 0610y Griffin, R. J., Okajima, K., Barrios, B., and Song, C.W. (1996). Mild tempera- ture hyperthermia combinedwith carbogenbreathing increases tumorpartial pressureofoxygen(pO2)andradiosensitivity.CancerRes.56,5590–5593. Guss,P.,Guise,R.,Yuan,D.,Mukhopadhyay,S.,O’Brien,R.,Lowe,D.,etal. (2013). Lanthanum halide nanoparticle scintillators for nuclear radiation detection. J.Appl.Phys.113:064303.doi:10.1063/1.4790867 Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J. A., and Smilowitz, H. M. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 55, 3045–3059. doi: 10.1088/0031-9155/55/11/004 Hainfeld,J.F.,Slatkin,D.N.,andSmilowitz,H.M.(2004).Theuseofgoldnanopar- ticles to enhance radiotherapy inmice. Phys.Med. Biol. 49, N309–N315. doi: 10.1088/0031-9155/49/18/N03 Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., and Chapman, J. D. (2000). Gold microspheres: a selective technique for producing biologi- cally effective dose enhancement. Int. J. Radiat. Biol. 76, 1357–1364. doi: 10.1080/09553000050151637 Hossain, M., and Su, M. (2012). Nanoparticle location and material depen- dent dose enhancement in X-ray radiation therapy. J. Phys. Chem. C. 116, 23047–23052.doi:10.1021/jp306543q Huang, P., Bao, L., Zhang, C. L., Lin, J., Luo, T., Yang, D. P., et al. (2011). Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation andphoto-thermal therapy.Biomaterials 32, 9796–9809. doi:10.1016/j.biomaterials.2011.08.086 Huang, X., El-Sayed, I. H., Qian, W., and El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J.Am.Chem.Soc.128,2115–2120.doi:10.1021/ja057254a Jacobsohn, L. G., Sprinkle, K. B., Kucera, C. J., James, T. L., Roberts, S. A., Qian, H., et al. (2010). Synthesis, luminescence and scintillation of rare earth doped lanthanumfluoride nanoparticles.Opt.Mater. 33, 136–140. doi: 10.1016/j.optmat.2010.07.025 Jacobsohn,L.G.,Sprinkle,K.B.,Roberts,S.A.,Kucera,C.J., James,T.L.,Yukihara, E.G., et al. (2011). Fluoridenanoscintillators. J.Nanomater.2011:523638. doi: 10.1155/2011/523638 Jain, S., Hirst, D. G., and O’Sullivan, J. M. (2012). Gold nanoparticles as novel agents forcancer therapy.Br. J.Radiol.85,101–113.doi:10.1259/bjr/59448833 Jelveh,S.,andChithrani,D.B.(2011).GoldNanostructuresasaplatformforcom- binational therapy in future cancer therapeutics. Cancers 3, 1081–1110. doi: 10.3390/cancers3011081 Jiang, G., Pichaandi, J., Johnson, N. J. J., Burke, R. D., and van Veggel, F. C. J. M. (2012).An effective polymer cross-linking strategy toobtain stable disper- sions of upconverting NaYF4 nanoparticles in buffers and biological growth media forbiolabelingapplications.Langmuir28, 3239–3247.doi: 10.1021/la20 4020m Jori,G., andReddi, E. (1993). The role of lipoproteins in thedelivery of tumour- targeting photosensitizers. Int. J. Biochem. 25, 1369–1375. doi: 10.1016/0020- 711X(93)90684-7 Jung, J. Y.,Hirata,G.A.,Gundiah,G.,Derenzo, S.,Wrasidio,W.,Kesari, S., et al. (2014). Identification anddevelopment of nanoscintillators for biotechnology applications. J.Lumin.154,569–577.doi:10.1016/j.jlumin.2014.05.040 Kampinga,H.H.(2006).Cellbiologicaleffectsofhyperthermiaaloneorcombined with radiationordrugs: a short introduction tonewcomers in thefield. Int. J. Hyperthermia22,191–196.doi:10.1080/02656730500532028 Kar,A.,Kundu,A.,Bhattacharyya,S.,Mandal,S., andPatra,A. (2013).Lanthanide based resonance energy transfer (LRET) betweenCe-doped LaPO4 nanorods andcoumarin440dye.RSCAdv.3,13372–13380.doi:10.1039/c3ra40728d Kessel, D., Thompson, P., Saatio, K., andNantwi, K. D. (1987). Tumor localiza- tion and photosensitization by sulfonated derivatives of tetraphenylporphine. Photochem.Photobiol.45,787–790.doi:10.1111/j.1751-1097.1987.tb07883.x Khoei,S.,Mahdavi,S.R.,Fakhimikabir,H.,Shakeri-Zadeh,A., andHashemian,A. (2014).Theroleof ironoxidenanoparticles in theradiosensitizationofhuman prostate carcinoma cell line DU145 atmegavoltage radiation energies. Int. J. Radiat.Biol.90,351–356.doi:10.3109/09553002.2014.888104 Klassen, N. V., Kedrov, V. V., Kurlov, V. N., Ossipyan, Y. A., Shmurak, S. Z., Shmyt’ko, I.M.,etal. (2008).Advantagesandproblemsofnanocrystallinescin- tillators. IEEETrans.Nucl. Sci.55,1536–1541.doi:10.1109/TNS.2008.924050 Klassen, N. V., Kedrov, V. V., Ossipyan, Y. A., Shmurak, S. Z., Shmyt’ko, I. M., Krivko, O. A., et al. (2009). Nanoscintillators for microscopic diagnostics of biological andmedical objects andmedical therapy. IEEETrans.Nanobiosci.8, 20–32.doi:10.1109/TNB.2009.2016551 Klein, S., Sommer, A., Distel, L. V. R., Hazemann, J.-L., Kroner,W., Neuhuber, W., et al. (2014). Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J.Phys.Chem.B118,6159–6166.doi: 10.1021/jp5026224 Kobayashi, H.,Watanabe, R., andChoyke, P. L. (2013). Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?Theranostics4,81–89.doi:10.7150/thno.7193 Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., and Le Sech, C. (2010). Enhancement of radiation effect byheavy elements.Mutat. Res.704, 123–131. doi:10.1016/j.mrrev.2010.01.002 Kong, D., Yang, P., Wang, Z., Chai, P., Huang, S., Lian, H., et al. (2008a). Mesoporous silica coatedCeF3:Tb3+particles for drug release. J. Nanomater. 2008:6.doi:10.1155/2008/312792 Kong, D. Y., Wang, Z. L., Lin, C. K., Quan, Z. W., Li, Y. Y., Li, C. X., et al. (2007). Biofunctionalization ofCeF(3):Tb(3+) nanoparticles.Nanotechnology 18:075601.doi:10.1088/0957-4484/18/7/075601 Kong,T., Zeng, J.,Wang,X.P., Yang,X.Y., Yang, J.,McQuarrie, S., et al. (2008b). Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4, 1537–1543. doi: 10.1002/smll.2007 00794 Kortov, V. S. (2010). Nanophosphors and outlooks for their use in ionizing radiation detection. Radiat. Meas. 45, 512–515. doi: 10.1016/j.radmeas.2009. 11.009 Le Duc, G., Miladi, I., Alric, C., Mowat, P., Bräuer-Krisch, E., Bouchet, A., et al. (2011). Toward an image-guided microbeam radiation ther- apy using gadolinium-based nanoparticles. ACS Nano 5, 9566–9574. doi: 10.1021/nn202797h Lempicki,A.,Wojtowicz,A. J., andBerman,E. (1993).Fundamental limitsof scin- tillator performance.Nucl. Instrum.Methods Phys. Res. A 333, 304–311. doi: 10.1016/0168-9002(93)91170-R Létant, S. E., and Wang, T. F. (2006). Semiconductor quantum dot scintilla- tion under γ-ray irradiation. Nano Lett. 6, 2877–2880. doi: 10.1021/nl06 20942 Leung,M.K.K.,Chow,J.C.L.,Chithrani,B.D.,Lee,M.J.G.,Oms,B.,andJaffray, D.A. (2011). Irradiationof goldnanoparticles by x-rays:monte carlo simula- tionofdoseenhancementsandthespatialpropertiesof thesecondaryelectrons production.Med.Phys.38,624–631.doi:10.1118/1.3539623 Liu, Y., Chen,W.,Wang, S., and Joly, A.G. (2008). Investigationofwater-soluble x-rayluminescencenanoparticles forphotodynamicactivation.Appl.Phys.Lett. 92,043901.doi:10.1063/1.2835701 Liu, Y., Zhou, S., Tu, D., Chen, Z., Huang, M., Zhu, H., et al. (2012). Amine-Functionalized lanthanide-doped zirconia nanoparticles: optical spec- troscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J. Am. Chem. Soc. 134, 15083–15090. doi: 10.1021/ja3 06066a Low, P. S., Henne, W. A., and Doorneweerd, D. D. (2008). Discovery and development of folic-acid-based receptor targeting for imaging and ther- apy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129. doi: 10.1021/ar7000815 Malyy, T. S., Vistovskyy, V. V., Khapko, Z. A., Pushak, A. S., Mitina, N. E., Zaichenko, A. S., et al. (2013). Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. J. Appl. Phys. 113, 224305. doi: 10.1063/1.48 08797 McKigney, E.A.,Del Sesto,R. E., Jacobsohn, L.G., Santi, P.A.,Muenchausen,R. E.,Ott,K.C.,etal. (2007a).Nanocompositescintillators forradiationdetection www.frontiersin.org October2014 |Volume2 |Article86 | 58
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics