Page - 58 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 58 -
Text of the Page - 58 -
Cooperet al. Nanoparticles for radiation therapy
El-Sayed, I. H., Huang, X., and El-Sayed, M. A. (2006). Selective laser photo-
thermal therapyof epithelial carcinomausing anti-EGFRantibody conjugated
goldnanoparticles.CancerLett.239,129–135.doi:10.1016/j.canlet.2005.07.035
Geng,F., Song,K.,Xing, J.Z.,Yuan,C.Z.,Yan, S.,Yang,Q.F., et al. (2011).Thio-
glucoseboundgoldnanoparticles enhance radio-cytotoxic targetingofovarian
cancer.Nanotechnology22:285101.doi:10.1088/0957-4484/22/28/285101
Giustini, A. J., Petryk,A.A., andHoopes, P. J. (2011).Comparisonofmicrowave
andmagnetic nanoparticle hyperthermia radiosensitization inmurine breast
tumors.Proc.SPIE7901.doi:10.1117/12.876515
Gobin, A.M., Lee, M. H., Halas, N. J., James,W. D., Drezek, R. A., andWest,
J. L. (2007). Near-infrared resonant nanoshells for combined optical imaging
andphotothermal cancer therapy.Nano Lett. 7, 1929–1934. doi: 10.1021/nl07
0610y
Griffin, R. J., Okajima, K., Barrios, B., and Song, C.W. (1996). Mild tempera-
ture hyperthermia combinedwith carbogenbreathing increases tumorpartial
pressureofoxygen(pO2)andradiosensitivity.CancerRes.56,5590–5593.
Guss,P.,Guise,R.,Yuan,D.,Mukhopadhyay,S.,O’Brien,R.,Lowe,D.,etal. (2013).
Lanthanum halide nanoparticle scintillators for nuclear radiation detection.
J.Appl.Phys.113:064303.doi:10.1063/1.4790867
Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J. A., and
Smilowitz, H. M. (2010). Gold nanoparticles enhance the radiation therapy
of a murine squamous cell carcinoma. Phys. Med. Biol. 55, 3045–3059. doi:
10.1088/0031-9155/55/11/004
Hainfeld,J.F.,Slatkin,D.N.,andSmilowitz,H.M.(2004).Theuseofgoldnanopar-
ticles to enhance radiotherapy inmice. Phys.Med. Biol. 49, N309–N315. doi:
10.1088/0031-9155/49/18/N03
Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., and Chapman, J. D.
(2000). Gold microspheres: a selective technique for producing biologi-
cally effective dose enhancement. Int. J. Radiat. Biol. 76, 1357–1364. doi:
10.1080/09553000050151637
Hossain, M., and Su, M. (2012). Nanoparticle location and material depen-
dent dose enhancement in X-ray radiation therapy. J. Phys. Chem. C. 116,
23047–23052.doi:10.1021/jp306543q
Huang, P., Bao, L., Zhang, C. L., Lin, J., Luo, T., Yang, D. P., et al. (2011). Folic
acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided
dual-mode radiation andphoto-thermal therapy.Biomaterials 32, 9796–9809.
doi:10.1016/j.biomaterials.2011.08.086
Huang, X., El-Sayed, I. H., Qian, W., and El-Sayed, M. A. (2006). Cancer cell
imaging and photothermal therapy in the near-infrared region by using gold
nanorods. J.Am.Chem.Soc.128,2115–2120.doi:10.1021/ja057254a
Jacobsohn, L. G., Sprinkle, K. B., Kucera, C. J., James, T. L., Roberts, S. A.,
Qian, H., et al. (2010). Synthesis, luminescence and scintillation of rare
earth doped lanthanumfluoride nanoparticles.Opt.Mater. 33, 136–140. doi:
10.1016/j.optmat.2010.07.025
Jacobsohn,L.G.,Sprinkle,K.B.,Roberts,S.A.,Kucera,C.J., James,T.L.,Yukihara,
E.G., et al. (2011). Fluoridenanoscintillators. J.Nanomater.2011:523638. doi:
10.1155/2011/523638
Jain, S., Hirst, D. G., and O’Sullivan, J. M. (2012). Gold nanoparticles as novel
agents forcancer therapy.Br. J.Radiol.85,101–113.doi:10.1259/bjr/59448833
Jelveh,S.,andChithrani,D.B.(2011).GoldNanostructuresasaplatformforcom-
binational therapy in future cancer therapeutics. Cancers 3, 1081–1110. doi:
10.3390/cancers3011081
Jiang, G., Pichaandi, J., Johnson, N. J. J., Burke, R. D., and van Veggel, F. C. J.
M. (2012).An effective polymer cross-linking strategy toobtain stable disper-
sions of upconverting NaYF4 nanoparticles in buffers and biological growth
media forbiolabelingapplications.Langmuir28, 3239–3247.doi: 10.1021/la20
4020m
Jori,G., andReddi, E. (1993). The role of lipoproteins in thedelivery of tumour-
targeting photosensitizers. Int. J. Biochem. 25, 1369–1375. doi: 10.1016/0020-
711X(93)90684-7
Jung, J. Y.,Hirata,G.A.,Gundiah,G.,Derenzo, S.,Wrasidio,W.,Kesari, S., et al.
(2014). Identification anddevelopment of nanoscintillators for biotechnology
applications. J.Lumin.154,569–577.doi:10.1016/j.jlumin.2014.05.040
Kampinga,H.H.(2006).Cellbiologicaleffectsofhyperthermiaaloneorcombined
with radiationordrugs: a short introduction tonewcomers in thefield. Int. J.
Hyperthermia22,191–196.doi:10.1080/02656730500532028
Kar,A.,Kundu,A.,Bhattacharyya,S.,Mandal,S., andPatra,A. (2013).Lanthanide
based resonance energy transfer (LRET) betweenCe-doped LaPO4 nanorods
andcoumarin440dye.RSCAdv.3,13372–13380.doi:10.1039/c3ra40728d Kessel, D., Thompson, P., Saatio, K., andNantwi, K. D. (1987). Tumor localiza-
tion and photosensitization by sulfonated derivatives of tetraphenylporphine.
Photochem.Photobiol.45,787–790.doi:10.1111/j.1751-1097.1987.tb07883.x
Khoei,S.,Mahdavi,S.R.,Fakhimikabir,H.,Shakeri-Zadeh,A., andHashemian,A.
(2014).Theroleof ironoxidenanoparticles in theradiosensitizationofhuman
prostate carcinoma cell line DU145 atmegavoltage radiation energies. Int. J.
Radiat.Biol.90,351–356.doi:10.3109/09553002.2014.888104
Klassen, N. V., Kedrov, V. V., Kurlov, V. N., Ossipyan, Y. A., Shmurak, S. Z.,
Shmyt’ko, I.M.,etal. (2008).Advantagesandproblemsofnanocrystallinescin-
tillators. IEEETrans.Nucl. Sci.55,1536–1541.doi:10.1109/TNS.2008.924050
Klassen, N. V., Kedrov, V. V., Ossipyan, Y. A., Shmurak, S. Z., Shmyt’ko, I. M.,
Krivko, O. A., et al. (2009). Nanoscintillators for microscopic diagnostics of
biological andmedical objects andmedical therapy. IEEETrans.Nanobiosci.8,
20–32.doi:10.1109/TNB.2009.2016551
Klein, S., Sommer, A., Distel, L. V. R., Hazemann, J.-L., Kroner,W., Neuhuber,
W., et al. (2014). Superparamagnetic iron oxide nanoparticles as novel X-ray
enhancer for low-dose radiation therapy. J.Phys.Chem.B118,6159–6166.doi:
10.1021/jp5026224
Kobayashi, H.,Watanabe, R., andChoyke, P. L. (2013). Improving conventional
enhanced permeability and retention (EPR) effects; what is the appropriate
target?Theranostics4,81–89.doi:10.7150/thno.7193
Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., and Le Sech, C. (2010).
Enhancement of radiation effect byheavy elements.Mutat. Res.704, 123–131.
doi:10.1016/j.mrrev.2010.01.002
Kong, D., Yang, P., Wang, Z., Chai, P., Huang, S., Lian, H., et al. (2008a).
Mesoporous silica coatedCeF3:Tb3+particles for drug release. J. Nanomater.
2008:6.doi:10.1155/2008/312792
Kong, D. Y., Wang, Z. L., Lin, C. K., Quan, Z. W., Li, Y. Y., Li, C. X., et al.
(2007). Biofunctionalization ofCeF(3):Tb(3+) nanoparticles.Nanotechnology
18:075601.doi:10.1088/0957-4484/18/7/075601
Kong,T., Zeng, J.,Wang,X.P., Yang,X.Y., Yang, J.,McQuarrie, S., et al. (2008b).
Enhancement of radiation cytotoxicity in breast-cancer cells by localized
attachment of gold nanoparticles. Small 4, 1537–1543. doi: 10.1002/smll.2007
00794
Kortov, V. S. (2010). Nanophosphors and outlooks for their use in ionizing
radiation detection. Radiat. Meas. 45, 512–515. doi: 10.1016/j.radmeas.2009.
11.009
Le Duc, G., Miladi, I., Alric, C., Mowat, P., Bräuer-Krisch, E., Bouchet,
A., et al. (2011). Toward an image-guided microbeam radiation ther-
apy using gadolinium-based nanoparticles. ACS Nano 5, 9566–9574. doi:
10.1021/nn202797h
Lempicki,A.,Wojtowicz,A. J., andBerman,E. (1993).Fundamental limitsof scin-
tillator performance.Nucl. Instrum.Methods Phys. Res. A 333, 304–311. doi:
10.1016/0168-9002(93)91170-R
Létant, S. E., and Wang, T. F. (2006). Semiconductor quantum dot scintilla-
tion under γ-ray irradiation. Nano Lett. 6, 2877–2880. doi: 10.1021/nl06
20942
Leung,M.K.K.,Chow,J.C.L.,Chithrani,B.D.,Lee,M.J.G.,Oms,B.,andJaffray,
D.A. (2011). Irradiationof goldnanoparticles by x-rays:monte carlo simula-
tionofdoseenhancementsandthespatialpropertiesof thesecondaryelectrons
production.Med.Phys.38,624–631.doi:10.1118/1.3539623
Liu, Y., Chen,W.,Wang, S., and Joly, A.G. (2008). Investigationofwater-soluble
x-rayluminescencenanoparticles forphotodynamicactivation.Appl.Phys.Lett.
92,043901.doi:10.1063/1.2835701
Liu, Y., Zhou, S., Tu, D., Chen, Z., Huang, M., Zhu, H., et al. (2012).
Amine-Functionalized lanthanide-doped zirconia nanoparticles: optical spec-
troscopy, time-resolved fluorescence resonance energy transfer biodetection,
and targeted imaging. J. Am. Chem. Soc. 134, 15083–15090. doi: 10.1021/ja3
06066a
Low, P. S., Henne, W. A., and Doorneweerd, D. D. (2008). Discovery and
development of folic-acid-based receptor targeting for imaging and ther-
apy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129. doi:
10.1021/ar7000815
Malyy, T. S., Vistovskyy, V. V., Khapko, Z. A., Pushak, A. S., Mitina, N. E.,
Zaichenko, A. S., et al. (2013). Recombination luminescence of LaPO4-Eu
and LaPO4-Pr nanoparticles. J. Appl. Phys. 113, 224305. doi: 10.1063/1.48
08797
McKigney, E.A.,Del Sesto,R. E., Jacobsohn, L.G., Santi, P.A.,Muenchausen,R.
E.,Ott,K.C.,etal. (2007a).Nanocompositescintillators forradiationdetection
www.frontiersin.org October2014 |Volume2 |Article86 | 58
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie